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Abstract

This paper (i) gives necessary and sufficient conditions that clocks in an
inertial lattice can be synchronized, (ii) shows that these conditions do not
imply a universal light speed, and (iii) shows that the terrestrial redshift
experiment provides evidence that clocks in a small inertial lattice in a
gravitational field can be synchronized.

The central, and revolutionary, postulate of special relativity is that the
speed of light between two points in an inertial frame is a universal constant. The
speed is defined in terms of synchronized clocks at the points. (See below.) But
the Hafele-Keating experiment [1] and muon decay experiments which measure
time dilation [2] show that a universal time does not exist, and so the notion
of separated synchronized clocks can have no a priori meaning. It follows that
the speed of light can have no meaning until a definition of synchronized clocks
is given. It is not simply that the speed cannot be measured; it can have no
meaning.

The purpose of this paper is not to enter into the debate surrounding the
above argument, for I believe that its logic is sound. Instead, the purpose is
to accept the conclusion of the argument and provide a proper foundation for
the universal light speed postulate by giving a simple account of the physical
principles involved in clock synchronization.

Some of the ideas developed here could profitably be used by teachers of rela-
tivity. I know of no special relativity text which discusses clock synchronization
before the speed of light. The texts usually begin with the Michelson-Morley
experiment and the universal light speed postulate and then show, among other
things, that there is no universal time. An alert student can be confused and
ask: If there is no universal time, then what was meant in the first place by
the speed of light? An approach starting with the Hafele-Keating experiment,
the nonexistence of a universal time, and clock synchronization avoids this log-
ical problem. (Another advantage of starting with the Hafele-Keating experi-
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ment is that it is a much more direct and dramatic violation of intuition than
the Michelson-Morley experiment, the interpretation of which usually involves
the introduction of a soon-to-be-abandoned ether, analogies with swimmers in
rivers, discussion of constructive and destructive interference of light, etc.)

Clock Synchronization

By an inertial frame we mean an inertial cubical lattice made of rigid rods
and with clocks at the nodes synchronized according to the following definition.
(An accelerometer can determine that the lattice is inertial.) Emit a flash of
light from a node O to a node P at time tO according to the clock at O. Let it
arrive at P at time tP according to the clock at P . Similarly, let a flash emitted
from P at time t′P arrive at O at t′O. Say the clocks are synchronized if

tP − tO = t′O − t′P (1)

The definition is essentially due to Einstein [3].
We now show that the following two conditions are necessary and sufficient

that clocks in an inertial lattice can be synchronized, or, in P. W. Bridgeman’s
descriptive phrase, that we can “spread time over space”.

(i) Emit flashes of light from a node R at times t1R and t2R according to a
clock at R. Let them arrive at a node S at times t1S and t2S according to the
clock at S. Then

t2S − t2R = t1S − t1R (2)

(ii) The time it takes light to traverse a triangle in the lattice is independent
of the direction taken around the triangle.

The condition (i) states that the two sides of Eq. (1) do not depend on the
times that the flashes are sent. It is a necessary and sufficient condition that
two given clocks can be synchronized. For if the clocks can be synchronized,
then Eq. (2) must hold in order that they remain synchronized. Conversely,
assume Eq. (2) holds. Suppose the flash from P to O in Eq. (2) is the reflection
of the flash from O to P . Let 2T = t′O − tO be the round trip time. Then Eq.
(2) can be written

tP = tO + T ; (3)

the clocks are synchronized if the flash arrives at P in half the time it takes for
the round trip. If we write 2T = (t′O − tP ) + (tP − tO), then Eq. (2) shows that
T is independent of the time the flash is sent. Now send a flash from O to P at
any time tO. When it arrives at P set the clock there to tO + T . According to
Eq. (3) the clocks are synchronized.

Synchronize all clocks with the one at O in this way.
We now show that (ii) is a necessary and sufficient condition that clocks at

nodes P and Q are synchronized with each other once they are both synchronized
with the clock at O. The condition has been verified for a square to one part in
1012 [4].
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Reflect a flash of light around the triangle OPQ. Let the flash be at
O,P,Q,O at times tO, tP , tQ, tR according to the clock at the node. Similarly,
let the times for a flash sent around in the other direction be t′O, t

′
P , t

′
Q, t

′
R. We

have the algebraic identities

tR − tO = (tR − tQ) + (tQ − tP ) + (tP − tO) (4)

t′R − t′O = (t′R − t′P ) + (t′P − t′Q) + (t′Q − t′O).

Since the clock at O is synchronized with those at P and Q,

tP − tO = t′R − t′P , tR − tQ = t′Q − t′O.

Thus the middle terms on the right-hand side of Eq. (4) are equal if, and only
if, the left sides are equal, i.e., the clocks at P and Q are synchronized if and
only if the condition (ii) is true for the triangle OPQ.

It follows from all this that conditions (i) and (ii) are necessary and sufficient
conditions that clocks in an inertial lattice can be synchronized.

Universal Light Speed

In this section we assume that clocks in an inertial lattice have been syn-
chronized. Let P and Q be nodes in the lattice at distance D apart. Emit a
flash of light from P toward Q at time tP according to the clock at P . Let it
arrive at Q at time tQ according to the clock at Q. Define the one-way speed of
the light from P to Q by D/(tQ − tP ). This one-way speed requires two clocks,
and to be meaningful, the clocks must be synchronized. If the flash is reflected
at Q back to P , arriving there at time t′P , define the two-way speed of the light
from P to Q by 2D/(t′P − tP ). This two-way speed requires one clock and so is
independent of clock synchronization.

According to Eq. (1), if clocks at P and Q are synchronized then the one-
way speed of light from P to Q is the same as the one-way speed from Q to P .
We emphasize that the equality of these speeds is a matter of definition which
can neither confirmed nor refuted by experiment.

Conditions (i) and (ii), necessary and sufficient for clock synchronization, are
easily verified for the classical Newtonian spacetime. But the two-way speed of
light in this spacetime is different in perpendicular directions (except in the ether
frame). This is precisely what the Michelson-Morely experiment was designed
to detect. According to the above remarks, once clocks are synchronized in this
space-time according to Eq. (1), the one-way speed of light will be different in
perpendicular directions. Thus, despite claims to the contrary [5], the ability to
synchronize clocks according to our definition does not imply a universal light
speed. [Clocks synchronized in a Newtonian space-time according to Eq. (1) are
not “really” synchronized. But this does not affect the logic of the argument.]

The Michelson-Morley and Kennedy-Thorndike [6] experiments show di-
rectly that the two-way speed of light is the same in different directions, in
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different inertial frames, and at different times. With clocks synchronized ac-
cording to Eq. (1), we can interpret the experiments as showing that the one-way
speed of light is the same in different directions, in different inertial frames, and
at different times. This is the great advantage of the definition of synchronized
clocks used here over all others. Conversely, the results of these experiments
provide strong motivation for our definition of synchronized clocks: if the two-
way speed of light has always the same value, what could be more natural than
to define synchronized clocks so that the one-way speed has always this value?

Terrestrial Redshift Experiment

Local inertial frames are natural coordinates to use in a curved space-time.
We now investigate the possibility of synchronizing clocks in a small inertial
lattice in a gravitational field to form a local inertial frame.

A rearrangement of Eq. (2) gives

t2R − t1R = t2S − t1S . (5)

The left-hand side is the time between the emission of the flashes at R and the
right side is the time between the reception of the flashes at S. If a clock at R
emits flashes at regular intervals to S, then Eq. (5) states that an observer at
S sees (actually sees) the clock at R going at the same rate as his clock. Of
course, the observer at S will see all physical processes at R proceeding at the
same rate that they do at S.

If the “flashes” of light in Eq. (2) are successive wavecrests of light, then
Eq. (5) states that the frequency of the received light is the same as that of the
emitted light. Thus the condition (i), necessary and sufficient that two given
clocks can be synchronized, is equivalent to a zero redshift between the points.
The terrestrial redshift experiment [7] shows that this condition fails for points
at the top and bottom of a tower. It follows that clocks in a small lattice at
rest on the ground cannot be synchronized.

We now show that the experiment provides evidence that Eq. (2) does hold
in a small inertial lattice in a gravitational field. In this way, the experiment
provides evidence that clocks in a small inertial lattice in a gravitational field
can be synchronized. In the experiment, the tower has (upward) acceleration
g in a small inertial lattice falling radially toward Earth. A simple calculation
shows that the redshift in this tower having acceleration g in an inertial lattice
in the Earth’s gravitational field is the same as the red shift in a tower having
acceleration g in an inertial frame in a flat spacetime [8]. Thus it is reasonable
to assume that the redshift in a tower at rest in a small inertial lattice in a
gravitational field is the same as the redshift in a tower at rest in an inertial
frame. In other words, it is reasonable to assume that Eq. (2) (no redshift)
holds in a small inertial lattice in a gravitational field. (It is desirable to test this
directly be performing the experiment in orbit.) If we attribute this “proper”
behavior of light in a small inertial lattice to no relative acceleration of the light
and lattice, then we may say (loosely, but picturesquely) that the experiment
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provides evidence that light accelerates the same as matter in a gravitational
field.
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