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Abstract

Magnetic work takes two forms in the thermodynamics of a paramag-

net as developed in many textbooks. We observe that in the case when

the lattice energy is excluded, the form δW = BdM cannot be used in

a fundamental thermodynamic equation. This shows that there are ther-

modynamic systems with no fundamental thermodynamic equation.

The thermal physics of magnetic systems has been the source of continuing
confusion. Mandl writes in the second edition of his text,1 “As is well known,
the thermodynamic discussion of magnetic systems easily leads to misleading
or even wrong statements, and I fear that the first edition was not free from
these.” And according to Kittel,2 “A great deal of unnecessary confusion exists
as to how to write the First Law of Thermodynamics for a magnetic system.”

For a paramagnetic crystal in a uniform magnetic field B, with total mag-
netic dipole moment M , there are two forms for the work done when B and M
change:

δWms = BdM and δWs = −MdB. (1)

The form δWms applies when the mutual field energy is included in the system,
the form δWs when it is not.3 The forms δWms and δWs are readily derived also
by means of statistical mechanics; we include these derivations in the appendix.

The thermodynamic derivations of these forms given by Mandl,4 Kittel,5

1F. Mandl, Statistical Physics (Wiley, Chichester, 1988), 2nd ed., p. vii.
2Charles Kittel, Elementary Statistical Physics (Wiley, New York, 1958), pp. 77-82.
3We take the paramagnetic spin system to be ideal : interaction among the dipole spins

is essentially absent. The model which results from this assumption is widely used, is an
excellent approximation to real systems within its domain of application, and does not obey
the third law of thermodynamics. It shares all these attributes with the ideal gas model.

4Reference 1, pp. 21-28 and 336-339.
5Reference 2, pp. 77-82.
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and Callen6 make no explicit reference to the crystal lattice. They assume
that the volume of the crystal does not change when a change in the magnetic
field is imposed; with this assumption, no work is done on the lattice alone.
Consequently, the work forms are valid whether or not the lattice is included
in the system. The form δWs = −MdB thus applies to the systems Ps (whose
internal energy is just the potential energy of the spins in the field) and Psl

(which includes the lattice energy as well). The form δWms = BdM applies to
the systems Pms and Pmsl, which add the mutual field energy to the first two
systems.

Now Ps and Pms, to which the lattice is external, are bona fide thermody-
namic systems, exchanging heat and work with their environment, possessing an
internal energy, entropy, and temperature, and obeying the first and second laws
of thermodynamics. The systems are in no way “unphysical” or “unrealistic.”
Indeed, the thermal physics of Ps has well-known applications. For example,
adiabatic cooling is explained in some elementary texts by consideration just of
Ps, with only passing reference to the lattice.7 And the statistical mechanics of
Ps takes a particularly simple form, so it appears frequently in developments of
elementary concepts.8

Notice that we do not assume that the spins are adiabatically separated from
the lattice, only that any heat transfer to the lattice is considered a transfer of
energy out of the system. Notwithstanding, the relaxation time between nuclear
spins and the lattice is so slow that these spin systems may be considered isolated
from the lattice.9 The realization that such spin systems are thermodynamic
systems in their own right underlies the modern recognition of the existence of
negative absolute temperatures.

Both δWms and δWs lead to correct forms of the first law:

dU = δQ + BdM (2)

applies to the systems Pms and Pmsl, while

dU = δQ − MdB (3)

applies to Ps and Psl.
Since δQ = TdS for reversible changes, we have, algebraically,

dU = TdS + BdM (4)

for Pms and Pmsl, and
dU = TdS − MdB (5)

6Herbert Callen, Thermodynamics and an Introduction to Thermostatics, (Wiley, New
York, 1985), 2nd ed., pp. 479-485.

7Reference 1, pp. 139-145; Tony Guenalt, Statistical Physics, (Routledge, London and New
York, 1988), pp. 38-43.

8Charles Kittel and Herbert Kroemer, Thermal Physics (Freeman, San Francisco, 1980),
2nd ed., pp. 62-64, 69-70.

9M. Toda, R. Kubo, and N. Saitô, Statistical Physics I (Springer-Verlag, Berlin, 1995),
2nd ed., p. 67.
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for Ps and Psl.
It might appear that we have obtained fundamental thermodynamic equa-

tions (FTEs) for our four systems. A fundamental thermodynamic equation (or
relation) is an equation

dU = TdS + Y dX, (6)

expressing the total differential of the energy function of the system in terms of
S and other independent variable(s) X.10

Eq. (5) is a valid FTE for Ps and Psl, the systems in which the mutual field
energy is excluded. And Eq. (4) is a valid FTE for Pmsl. But we shall show that
Eq. (4) cannot be regarded as an FTE for Pms. This system has peculiarities
which seem not to have been noted before. They are worthy of attention for
several reasons. Since the aforementioned authors do not even mention the
lattice in their derivations of δWms, it is easy to fall into the belief that Eq. (4)
is a valid FTE for Pms, just as Eq. (5) is valid for Ps. No author points out
that Eq. (4) is an FTE only if the lattice energy is included. The example of
Pms shows that one cannot simply and automatically replace δQ with TdS in
the expression of the first law and obtain an FTE. We see below, in fact, that
Pms furnishes an example of a thermodynamic system which has no FTE.

An FTE (Eq. (6)) is more than just an algebraic relationship among its
constituent quantities. (A) Since it exhibits a total differential, S and X are
independent, and the coefficients T and Y are partial derivatives of U . (B) Phys-
ically, S and X suffice to completely determine the state of the thermodynamic
system.11 Moreover, the energy function U(S, X) contains all thermodynamic
information about the system.12

Much of the thermodynamic formalism is built on these requirements. Yet
Eq. (4) applied to Pms fails them both, as we now describe.

(A) requires that S and M be independent variables. But in Pms (and in
Ps), S = Sms = Ss is a function of M alone: S = S(M). For S is a function of
the probability p = p(spin up): S = NkB(−p ln p − (1 − p) ln(1 − p)). p in turn
is a function of the quantity x = mB/kT : p = ex/(ex + e−x); the denominator
is the partition function for a 1-particle system. Finally, x is a function of M
by the equation of state M = Nm tanh x. (The explicit formula for S in terms
of M is derived in the appendix.)

10Our terminology is in agreement with common usage; see for example reference 1, p. 86
and David Chandler, Introduction to Modern Statistical Mechanics, (Oxford University Press,
New York, 1987), p. 10. The energy might be expressed as a function of different independent
variables, so we do not assume that an FTE for a system is unique. However, we do not
use the term FTE to refer to equations expressing differentials of Legendre transforms of the
energy (or of the entropy).

11As is customary when dealing with paramagnetic solids, we take N and V to be constant;
therefore, they need not appear in a fundamental equation.

12Reference 6, pp. 28-29. Callen says that “once the fundamental relation of a system is
known, every thermodynamic attribute is completely and precisely determined.” He means
by fundamental relation the expression of the energy (or the entropy), not the differential of
the energy, as a function of its independent variables. The difference in terminology makes
no difference for (B): since U is defined only up to an additive constant, U and dU can each
be recovered from the other and contain the same information.
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(The entropy Smsl is not a function of M , so that Eq. (4) is a valid funda-
mental thermodynamic equation for Pmsl. Proof: Smsl is the sum of the spin
entropy, which by the preceding paragraph is a function of M , and the lattice
entropy, which is an increasing function of T . If Smsl were a function of M , i.e.,
Ss(M) + Sl(T ) = f(M), a change in T would necessarily change M . But this
is not the case: by the equation of state, M is a function of B/T , and so the
change in T can be followed by an isothermal change in B to restore M to its
original value.)

The spins in our paramagnetic crystal have total potential energy Us =
−MB in the magnetic field, while the mutual field energy is MB.13 Thus the
energy of the system Pms is

Ums = Us + Um = −MB + MB ≡ 0! (7)

All partial derivatives of Ums are therefore identically 0 over the state space;
but the coefficients in Eq. (4) are not.

As for (B), S and M do not by themselves determine the thermodynamic
state of Pms. Specifying S and M determines p and thereby x. x determines
the ratio B/T , but there are infinitely many values of B and T which yield this
ratio; each such pair of values corresponds to a different state of the system
consistent with the given S and M .

Since Eq. (4) fails (A) and (B), it cannot be an FTE for Pms. In fact, since
Ums ≡ 0 clearly does not contain all thermodynamic information about this
system, there is no FTE for Pms.

If one does take Eq. (4) (or any equation) to be an FTE for Pms, then
the thermodynamic formalism produces incorrect results, two of which we now
describe.

The temperature of Pms may be obtained by setting Ums = 0 in (the al-
gebraically correct) Eq. (4) and solving for T : T = −M ′(Sms)B; or it may
be obtained from the appendix since it is the same as the temperature of Ps.
If Pms possessed an FTE (Eq. (6)), then the thermodynamic formalism would
define T = (∂Ums/∂Sms)X ≡ 0, which is not correct. In Eq. (4) for Pms,
S = Sms and M are not independent (as discussed under (A)), and so the par-
tial (∂Ums/∂S)M does not even exist, since one cannot vary S while keeping M
fixed.

Maxwell’s relations express the equality of the second order mixed partials
of U . If Eq. (4) were an FTE for Pms, then we could read off the Maxwell
relation (∂T/∂M)S = (∂B/∂S)M . As in the previous paragraph, this has no
meaning for Pms since one cannot hold one of S and M fixed while varying the
other. Eq. (5) gives (∂T/∂B)S = −(∂M/∂S)B for Ps. Since all quantities in
this expression have the same value for Ps and Pms, the expression is also valid
for Pms.

13Reference 1, p. 26.
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In spite of the foregoing considerations, one might argue as follows. From
Eq. (5) for Ps, Us = Us(Ss, B). Take the Legendre transform with respect to
B to obtain the “enthalpy” H(Ss, M) = Us + MB. Then dH = TdSs + BdM .
Since Sms = Ss, the right side is the same as the right side of Eq. (4) for Pms,
which therefore is a total differential, contradicting our earlier claims. But
Us = −MB and so H ≡ 0. Thus H can no more serve as a thermodynamic
potential for Pms than can Ums. (Cf. Eq. 7 et seq.)

Appendix: Statistical Mechanics of the System Ps.

Here we collect for reference the derivation of the properties of the N -particle
paramagnetic spin system Ps discussed in the article. The canonical ensemble
is understood in what follows.

We label the two eigenstates of a single-particle system “spin-up” and “spin-
down”, with potential energies in the uniform field ε1 = −mB and ε2 = +mB.
Let x = mB/kBT . Then the single-particle partition function is Z1 = ex + e−x

and the probabilities of the eigenstates are p = Pr(ε1) = ex/Z1; q = Pr(ε2) =
1 − p = e−x/Z1. As an immediate consequence,

ln p − ln q = 2x = 2mB/kBT (8)

The (mean) total magnetic moment is M = Nm(p − q) = Nm(2p − 1)
= NM1, where M1 denotes the mean total magnetic moment per particle. In-
serting p = ex/Z1 into this expression gives the equation of state for paramag-
netic systems:

M = Nm tanh x. (9)

In particular we see that M is a function of B/T . Rearranging the first expres-
sion for M gives p = 1/2 + M/2mN and q = 1/2 − M/2mN . If we substitute
these values for p and q in (8), we get

T =
mB

kB [ln(m − M/N) − ln(m + M/N)]
.

The entropy is defined as S = NS1 = NkB [−p ln p − q ln q], where S1 is the
entropy per particle. Substituting for p and q, S can be written as a function
of M as asserted in the article:

S = NkB

[

−

(

1

2
+

M

2mN

)

ln

(

1

2
+

M

2mN

)

−

(

1

2
−

M

2mN

)

ln

(

1

2
−

M

2mN

)]

Next we compute dS1, using Eq. (8), and dM1:

dS1 = −kBd[p ln p + q ln q] = −kB [dp(1 + ln p) − dp(1 + ln q)]

= kB [dp(ln p − ln q)] =
−2mB

T
dp

dM1 = d(m(2p − 1)) = 2mdp
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Therefore,

TdS = TNdS1 = TN
−B

T
dM1 = −BdM. (10)

The mean energy per particle is the expected value of the eigenenergies,
ε1p + ε2q = −mB(p − q). The (mean) energy of the whole system is Us =
N(−mB(p − q)) = −MB. The differential of Us is

dUs = −BdM − MdB = TdS − MdB, (11)

thus establishing an FTE for Ps. Eq. (11) and Eq. (10) together show that
for reversible changes (i.e., δQ = TdS) in a system with fixed N , the work is
δWs = −MdB.

For the system Pms, which includes the mutual field energy, the internal
energy is 0, but the temperature and the entropy are the same as in Ps. For
reversible changes, we have by Eq. (10)

0 = dUms = δQms + δWms = TdS + δWms = −BdM + δWms,

and so the work is δWms = BdM .
As a final application of the statistical mechanics, we offer a short derivation

of Eq. (5) and Eq. (4) for the systems Psl and Pmsl, respectively. We write
Um = MB for the mutual field energy, Us = −MB for the spin potential
energy, and Ul for the lattice energy; we write Ss instead of S for the spin
entropy to keep it distinct from Sl, the lattice entropy. Taking differentials,

dUm = d(MB) = BdM + MdB (12)

dUs = d(−MB) = −BdM − MdB = TdSs − MdB

dUl = TdSl

The second line uses Eq. (10). The third line contains no work term because the
volume is essentially constant. We may use the same T in both the second and
third lines because the spins and the lattice are thermally coupled and assumed
to be in equilibrium.

Adding the second and third lines of Eqs. (12) gives

dUsl = d(Us + Ul) = Td(Ss + Sl) − MdB = TdSsl − MdB. (13)

Adding all three lines gives

dUmsl = d(Um + Us + Ul) = Td(Ss + Sl) + BdM = TdSmsl + BdM. (14)
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