Assume:
(A) The speed of light is the same in all inertial frames. (Take \(c = 1 \).)
(B) A clock moving with constant velocity \(v \) in an inertial frame \(I \) runs at a constant rate \(\gamma = \gamma(|v|) \) with respect to the synchronized clocks of \(I \) which it passes.

Assumption (B) follows directly from the relativity principle. We do not assume that the Lorentz transformation is linear.

In the figure, \(E \) is an arbitrary event plotted in an inertial frame \(I \), \(L^+ \) and \(L^- \) are the two light worldlines through \(E \), and \(O \) is the worldline of the spatial origin of an inertial frame \(I' \) moving with velocity \(v \) in \(I \). On \(O \),

\[
X' = 0, \quad X = vT, \quad \text{and} \quad T = \gamma T'.
\]

Thus on \(O \),

\[
\begin{align*}
T + X &= \gamma(1 + v)(T' + X') \quad (1) \\
T - X &= \gamma(1 - v)(T' - X'). \quad (2)
\end{align*}
\]

Since \(c = 1 \) in \(I \), an increase in \(T \) along \(L^- \) is accompanied by an equal decrease in \(X \). Thus \(T + X \) is the same at \(E \) and \(F \). Likewise, since \(c = 1 \) in \(I' \), \(T' + X' \) is the same at \(E \) and \(F \). Thus Eq. (1), which is true at \(F \), is also true at \(E \). Similar reasoning using \(L^+ \) proves Eq. (2) true at \(E \). Add and subtract Eqs. (1) and (2):

\[
\begin{align*}
T &= \gamma(T' + vX') \quad (3) \\
X &= \gamma(vT' + X'). \quad (4)
\end{align*}
\]

For \(X = 0 \) in Eq. (4), \(X' = -vT' \); the origin of \(I \) has velocity \(-v \) in \(I' \). Thus, switching \(I \) and \(I' \) and using (B), the reasoning for Eq. (1) also gives \(T' + X' = \gamma(1 - v)(T + X) \). Substituting this in Eq. (1) gives \(\gamma = (1 - v^2)^{-\frac{1}{2}} \).
