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Abstract

We outline a new and simple development of special and general relativity
based on the physical meaning of the spacetime interval. The Lorentz
transformation is not used.

1 Introduction

In 1908, only three years after Einstein’s discovery of special relativity, Hermann
Minkowski geometrized the theory by uniting space and time into spacetime.
This provided enormous insight into special relativity and became the starting
point for general relativity, a geometrization of gravity.

The fundamental geometric object in a Minkowski spacetime is the space-
time interval ∆s between two events. Elementary special relativity texts discuss
the interval to various degrees. In most, ∆s is defined in terms of the coordi-
nates of an inertial frame: ∆s2 = ∆t2 − ∆x2. In these texts the important
properties of ∆s are the formula just given, and its invariance under a change
of inertial frames. The invariance is usually proved as a consequence of the
Lorentz transformation. A physical meaning for ∆s is given later, if at all.

My purpose here is to describe a new approach to relativity which puts the
physical meaning of ∆s front and center. I believe that this approach provides
quicker access to and deeper understanding of both special and general relativity.

Elementary Euclidean geometry helps to motivate the approach. In Eu-
clidean geometry, a distance ∆s has a physical meaning as something measured
by a ruler. Its meaning does not depend on the notion of coordinate systems.
If coordinates are introduced, then we have the formula ∆s2 = ∆x2 + ∆y2

(Pythagorean theorem). But the physical meaning of ∆s as a directly measure-
able quantity is more important than the mathematical formula for it in terms
of coordinate differences (as important as the formula is). The formula for a
rotation of coordinates is even less important. Note however, that since ∆s
has a physical meaning independent of coordinates, it is automatically invariant
under a rotation of coordinates.
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In Sec. 2 we discuss the interval of special relativity. The interval has a
simple physical meaning as something measured by light, a clock, or a rod. It
is thus a fundamental physical quantity. Its meaning does not depend on the
notion of inertial frames. In the approach to special relativity described in Sec.
2, we define ∆s physically, without reference to inertial frames. We then prove
that if inertial frames are introduced, then ∆s2 = ∆t2 −∆x2. But the physical
meaning of ∆s as a directly measureable quantity is more important than the
mathematical formula for it in terms of coordinate differences (as important
as the formula is). The Lorentz transformation is even less important. Note
however, that since ∆s has a physical meaning independent of coordinates, it is
automatically invariant under a Lorentz transformation.

In Sec. 3 we develop the curved spacetime of general relativity by replacing
the finite interval ∆s with the infinitesimal interval ds and then repeating the
development of special relativity in Sec. 2.

In Sec. 4, an appendix, we compare the development of general relativity
presented here with those based on the equivalence principle.
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2 The Interval in Special Relativity

The Hafele-Keating experiment provides the best introduction to the approach
to special relativity taken here.1 Recall that Hafele and Keating synchronized
two clocks and then placed them in separate airplanes, which circled the Earth
in opposite directions. When the clocks were brought together again, they were
ticking at the same rate, but they were not synchronized. Both special and
general relativistic effects contributed to the difference.2 The experiment shows
that clocks with different worldlines between two events in a spacetime can
measure different times between the events, just as different curves between two
points in a plane can have different lengths.

Two points in a plane determine a quantity ∆s, the distance between the
points as measured by a ruler. Analogously, we have the

Definition. Two events E and F in spacetime determine a physical quantity
∆s, the spacetime interval between the events:

• If an inertial clock can move between E and F , define ∆s to be the time
between E and F as measured by the clock. Call ∆s the proper time
between the events and say that the events are timelike separated.

• If light can move between E and F , define ∆s = 0. Say that the events
are lightlike separated.

• If neither light nor clocks can move between E and F then, as we shall see,
a rigid rod can have its ends simultaneously at E and F . (Simultaneously
in the sense that light flashes emitted at E and F reach the center of
the rod simultaneously, or equivalently, that E and F are simultaneous
in the rest frame of the rod.) Define |∆s| to be the rest length of this
rod. (The reason for the absolute value will be clear later.) Call |∆s| the
proper distance between the events and say that the events are spacelike
separated.

In each case, knowing ∆s for a pair of events tells us something physical
about the events. For example, if ∆s = 0, then we know that light can move
between the events.

Cartesian coordinates provide coordinates in a plane. Analogously, inertial
frames provide coordinates in a flat spacetime. We use the notion of an inertial
frame in the physical sense of Taylor and Wheeler3: a cubical lattice of inertial4

rigid rods with synchronized clocks5 at the nodes. Our fundamental assumption
for special relativity is that the speed of light is the same in all inertial frames.
Choose units of time and space so that c = 1.

The Pythagorean theorem allows us to compute the distance ∆s between
two points in terms of their coordinate differences: ∆s2 = ∆x2 + ∆y2. The
following theorem, which may be considered the fundamental theorem of ana-
lytic Minkowskian geometry, allows us to compute the spacetime interval ∆s
between two events in terms of their coordinate differences.
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Theorem. Let events E and F have coordinate differences (∆t,∆x) in an
inertial frame I. Then

∆s2 = ∆t2 −∆x2 (1)

Proof. We prove Eq. 1 separately for E and F lightlike, timelike, and
spacelike separated.

Lightlike. In this case light can move between the events. By definition,
∆s = 0. Since c = 1,∆x = ∆t. Eq. 1 follows.

Timelike. In this case an

Figure 1: ∆s2 = ∆t2−∆x2 for timelike separated
events E and F .

inertial clock C can move be-
tween the events. By definition,
∆s is the time C measures be-
tween the events. Let C carry
a rod R pointing perpendicular
to its direction of motion. Let R
have a mirror M on the end. At
E a flash of light is sent along R
from C. The length of R is ar-
ranged so that the flash is reflected by M back to F . Fig. 1 shows the path of
the light in two spatial dimensions of I, together with C, R, and M as the light
reflects off M.6

Refer to the rightmost triangle in Fig. 1. In I, the distance between E and
F is ∆x. This gives the labeling of the base of the triangle. In I, the light takes
the time ∆t from E to M to F . Since c = 1 in I, the light travels a distance
∆t in I. This gives the labeling of the hypotenuse. C is at rest in some inertial
frame I ′. In I ′, the light travels the length of the rod twice in the proper time
∆s between E and F measured by C. Since c = 1 in I ′, the length of the
rod is 1

2∆s in I ′. This gives the labeling of the altitude of the triangle. (We
have tacitly assumed here that the length of the rod is the same in I and I ′.
Textbook authors make the same assumption when setting y = y′ and z = z′

for inertial frames whose x- and x′-axes coincide. This follows from a simple
symmetry argument or the relativity principle.7)

Applying the Pythagorean theorem to the triangle now shows, in a most
graphic way, that accepting a universal light speed forces us to abandon a uni-
versal time and accept Eq. (1) for inertial clocks.

The argument shows that since the light travel distance is longer in I than
for C (twice the hypotenuse vs. twice the altitude) and the speed c = 1 is the
same in I as for C, the time ( = distance/speed) between E and F is longer in
I than for C.

Turning this around, the argument shows how it is possible for a single flash
of light to have the same speed in inertial frames moving with respect to each
other: the speed (distance/time) can be the same because the distance and the
time are different in the two frames.
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Spacelike. By definition, nei-

Figure 2: ∆s2 = ∆t2 − ∆x2 for spacelike sepa-
rated events E and F . See the text.

ther light nor clocks can move
between spacelike separated events.
Thus ∆x > ∆t. For convenience,
take E to have coordinates E(0, 0).
Fig. 2 shows the worldline W ′

of an inertial observer O′ mov-
ing with velocity v = ∆t/∆x in
I. (Note that ∆t is the distance
difference and ∆x is the time
difference.) L± are the light world-
lines through F . Since c = 1 in
I, the slope of L± is ±1. Solv-
ing simultaneously the equations
for L− and W ′ gives the coordinates R(∆x,∆t). Similarly, the equations for
L+ and W ′ give S(−∆x,−∆t).

According to Eq. (1), the proper time, as measured by O′, between the
timelike separated events S and E, and between E and R, is (∆x2 − ∆t2)

1
2 .

Since the times are equal, E and F are, by definition, simultaneous in an inertial
frame I ′ in which O′ is at rest. Since c = 1 in I ′, the distance between E and F
in I ′ is (∆x2 −∆t2)

1
2 . Thus a rod at rest in I ′ with its ends simultaneously at

E and F will have rest length (∆x2 −∆t2)
1
2 . By definition, this length is |∆s|.

This proves Eq. (1) for spacelike separated events, and completes the proof of
the theorem.

For the timelike separated events above, v = ∆x/∆t is the speed in I of the
inertial clock measuring the proper time ∆s between the events. Then:

∆s = (∆t2 −∆x2)
1
2 =

[
1− (∆x/∆t)2

] 1
2 ∆t = (1− v2)

1
2 ∆t. (2)

This is the time dilation formula, which expresses the proper time ∆s between
the events in terms of the inertial frame time ∆t between the events.

For the spacelike separated events above, v = ∆t/∆x is the speed in I of the
rod measuring the proper distance between the events. A calculation analogous
to Eq. 2 shows that

|∆s| = (1− v2)
1
2 |∆x|.

This expresses the proper distance |∆s| between the events in terms of the iner-
tial frame distance |∆x| between the events. (This is not the length contraction
formula.)
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Time along worldlines. In a plane, the relation ∆s2 = ∆x2 + ∆y2 gives
only the length of a special curve between two points: the straight line. But
the differential version, ds2 = dx2 + dy2, can be integrated to give the length of
any curve between the points.

Eqs. (1) and (2) give only the time measured by a special clock moving
between two events: an inertial clock. But the differential versions can be
integrated to give the time s measured by any clock C moving between the
events.8 Thus let C move with velocity v(t), t1 ≤ t ≤ t2. Then according to the
differential version of Eq. (2),

s =
∫ t2

t1

ds =
∫ t2

t1

(1− v2(t))
1
2 dt <

∫ t2

t1

dt = t2 − t1.

The time s measured by C between the events is less than the time t2 − t1
measured by the synchronized clocks of the inertial frame between the events.
In particular, if C returns to its starting point P in the inertial frame, then it
measures less time for the round trip than a clock at rest at P . This analysis
of the “twin paradox” uses only one inertial frame.

Curvilinear coordinates (yi) can be used in the flat spacetime of special
relativity, just as they can in a plane. Such coordinates are not much used
in flat spacetimes because inertial frame coordinates are usually easier to use.
We will not have this luxury in curved spacetimes. As preparation for this,
we express the differential version of Eq. (1) in terms of the (yi). Write the
differential version, with three space coordinates, as

ds2 = fmndx
mdxn,

where (x0, x1, x2, x3) = (t, x, y, z) and

(fmn) =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


(We use the Einstein summation convention, in which a repeated index is im-
plicitly summed.) If the coordinate change is xm = xm(yj), then

ds2 = fmndx
mdxn

= fmn

(
∂xm

∂yj
dyj

)(
∂xn

∂yk
dyk

)
=

(
fmn

∂xm

∂yj

∂xn

∂yk

)
dyjdyk

= gjkdy
jdyk, (3)

where we have set

gjk = fmn
∂xm

∂yj

∂xn

∂yk
. (4)
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3 The Interval in General Relativity

The central idea of general relativity is that a spacetime containing mass is
curved. This is not simply a negative statement that the spacetime is not the
flat spacetime of special relativity. It is the positive statement that a spacetime
containing mass has a metric ds of a special kind: a Riemannian metric, where
ds2 = gjkdy

jdyk. There are other possibilities. For example, we might have
ds4 = gjklmdy

jdykdyldym or, more generally, a Finsler metric.9

A curved surface is different from a flat surface. However, a simple observa-
tion of C. F. Gauss provides the key to the construction of the modern theory
of surfaces: a small region of a curved surface is much like a small region of a
flat surface. This is familiar: ignoring surface irregularities, a small region of
the Earth appears flat.

Imagine surface dwellers, two dimensional beings inhabiting a flat surface.
They define ∆s as the distance between two points as measured by a rigid rod.
They also construct coordinate systems of square grids of rods and discover
that ∆s2 = ∆x2 + ∆y2. The surface dwellers awaken one morning to find
that they can no longer fit rigid rods together to form a square grid over large
areas. However, one of them, C. F. Gauss, notices that he can construct small
square grids in which ds2 = dx2 + dy2. He then translates, as in Eq. (3),
this equation into a general coordinate system (y1, y2) to obtain a Riemannian
metric ds2 = gjkdy

jdyk. In this way he discovers that his universe became
curved overnight.

A spacetime containing mass is different from a flat spacetime. For example,
tidal effects prevent us from fitting inertial rigid rods together to form an inertial
frame over all spacetime. However, a simple observation of Einstein provides
the key to the construction of general relativity: as viewed by inertial observers,
a small region of a spacetime containing matter is much like a small region of
flat spacetime. We see this vividly in motion pictures of astronauts in orbit:
inertial objects in their cabin move in a straight line at constant speed, just as
in a flat spacetime.

In accord with Einstein’s observation, in a spacetime containing mass it is
possible to construct a local inertial frame: a small cubical lattice of inertial
rigid rods with synchronized clocks at the nodes. We can imagine a local in-
ertial frame in the astronauts’ cabin. Our fundamental assumption for special
relativity was that c = 1 in inertial frames. Again in accord with Einstein’s
observation, our fundamental assumption for general relativity is that c = 1 in
local inertial frames.
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We now repeat the development of special relativity in the last section for a
spacetime containing mass:

1. Define the spacetime interval ds physically for neighboring events. The
definition is given at the beginning of Sec. 2.

2. Prove that ds2 = dt2 − dx2 in local inertial frames from our assumption
that c = 1 in local inertial frames. This is the theorem following the
definition.

3. Transform this equation to ds2 = gjkdy
jdyk in an arbitrary coordinate

system. The transformation is given in Eqs. 3 and 4.

In this way we discover that a spacetime containing mass has a Riemannian met-
ric! In short: If c = 1 in local inertial frames, then spacetime has a Riemannian
metric.

In this approach to general relativity:

• The physical meaning of the interval precedes its mathematical expression.

• The physical and mathematical similarity between special and general
relativity is emphasized.

• Tensor analysis is not needed.

• On the other hand, the calculation Eq. 3 shows that Eq. 4 holds between
any two coordinate systems, i.e., the metric is a tensor. Thus the notion
of a tensor arises naturally.

• The metric was constructed using local inertial frames. There is obviously
a relationship between the motion of these free falling coordinate systems
and the distribution of mass in the spacetime. Thus there is a relationship
between the metric of a spacetime and the distribution of mass in it. This
helps motivate the field equation R− 1

2Rg = −8πκT, which is of the form:[
quantity determined

by metric

]
=
[

quantity determined
by mass

]
.

• The analogy with surface dwellers is helpful.
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4 Appendix: The Equivalence Principle

The Riemannian metric of general relativity is usually taken to be a consequence
of the equivalence principle.10 However, Synge11 and Ohanian12 have argued,
for me persuasively, that the equivalence principle, as usually understood, is
false. I am not aware of any attempt to refute their arguments. I consider here
the equivalence principle in the context of this paper.

It is again convenient to start with curved surfaces. Consider a triangle on
a sphere. The sum of its angles exceeds 180◦. But if the triangle’s area is small,
then the sum of its angles is approximately 180◦: lim

Area→0
(Angle sum) = 180◦.

We say that the angle sum does not couple to the curvature of the sphere.
Surface dwellers might try to extend this by asserting an equivalence prin-

ciple: for every measurement value M on a surface, lim
Area→0

M = Mo, where Mo

is the flat surface value of M . However, this is false, as we now show. Let our
sphere have radius R and let N be a point on it. Connect all points at distance
r from N to get a circle C of radius r (in the sphere) and circumference C(r).
See Fig. 3. Let the measurement M on C be

M =
(

3
π

)
2π r − C(r)

r3
.

From the figure,

C(r) = 2πR sinφ = 2πR sin(r/R) = 2πR
[
r/R− (r/R)3/6 + . . .

]
.

Using this, we find that lim
Area→0

M = 1/R2. Since Mo = 0, their equivalence

principle is violated. The limiting value of M (on any surface) is called the
curvature of the surface at N . The surface dweller’s equivalence principle is
violated because some local measurements couple to the curvature. Thus the
most we can say is our statement above: “A small region of a curved surface is
much like a small region of a flat surface.”

Figure 3: Violations of an equivalence principle.

Let us now turn to curved spacetimes. Consider with Einstein an elevator in
radial free fall toward the Earth. Two particles are initially at rest in the eleva-
tor, one above the other, at a distance ∆r apart. See Fig. 3. The acceleration
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of each particle with respect to the Earth is a = −κM/r2. Thus their relative
acceleration (which is measurable in the elevator) is ∆a ≈ (2κM/r3)∆r. Thus
if ∆r ≈ 0, then ∆a ≈ 0: lim

∆ r→0
∆ a = 0.

The equivalence principle extends this by asserting: For every measurement
value M in a region R of a curved spacetime, lim

size(R)→0
M = M0, where M0 is the

flat spacetime value of M.14 However, this statement is false. For suppose we
measure, not ∆a, but ∆a/∆r. Then lim

size(R)→0
M = da/dr = 2κM/r3. Since

M0 = 0, the equivalence principle is violated.15

The ∆a/∆r measurement couples to the curvature of spacetime, whereas
the ∆r measurement does not. The equivalence principle is violated because
some local measurements couple to the curvature. We cannot simply dismiss
such measurements by saying that they “suffer tidal effects”. For unless we can
specify physically which measurements suffer such effects, this amounts to saying
that “measurements obey the equivalence principle unless they do not”. The
most we can say is our statement above: “A small region of a curved spacetime
is much like a small region of a flat spacetime.”

Without the equivalence principle, how can we obtain the Riemannian met-
ric? Ohanian simply postulates its existence.16 Our approach is different: We
have shown here that a specific physical principle, a universal light speed in
local inertial frames, implies the existence of a Riemannian metric for curved
spacetimes. Even if one believes the equivalence principle, this seems worth
noting.
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