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Abstract

In general relativity, a spacetime and a gravitational field form an indi-
visible unit: no field, no spacetime. This is a lesson of Einstein’s hole
argument. We use a simple transformation in a Schwartzschild spacetime
to illustrate this.

On the basis of the general theory of relativity . . . space as opposed
to “what fills space” . . . has no separate existence. . . . There is no
such thing as an empty space, i.e., a space without [a gravitational]
field. . . . Space-time does not claim existence on its own, but only
as a structural quality of the field.

Albert Einstein, 1952.

Introduction. What justification can be given for Einstein’s words,1 writ-
ten late in his life? The answer to this question has its origin in 1913, when
Einstein was searching for a field equation for gravity. Einstein was aware of the
possibility of generally covariant field equations, but he believed – wrongly, it
turned out – that they could not possess the correct Newtonian limit. He then
proposed a field equation covariant only under linear coordinate transforma-
tions. To buttress his case against generally covariant field equations, Einstein
devised his hole argument, which purported to show that no generally covariant
field equation can be satisfactory. When Einstein discovered his fully satisfac-
tory generally covariant field equation for general relativity in 1915, it became
apparent that there is a hole in the argument.2

The twin and pole-in-the-barn “paradoxes” of special relativity3 are invalid
arguments whose elucidation helps us better understand the theory. So too it
is with the hole argument and general relativity. Einstein’s words are lessons of
the hole argument.
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Fig. 1: The coordinate
change r′ = f(r):
r′ = r except in
the hole a < r < b.

Many authors have written about the hole argument,
mostly from an historical or philosophical perspective.4

But none provide a simple concise account of the argu-
ment, its rebuttal, and its lessons. My purpose here is
to provide such an account.

Other authors use a general spacetime in the hole
argument. I use the Schwartzschild spacetime, whose
simple geometry makes the argument more concrete and
visualizable. This is sufficient to understand the argu-
ment and its lessons.

The Solutions G and G′. In general relativity,
the gravitational field of a spherically symmetric cen-
tral mass is usually represented by the Schwartzschild
solution

G(r) : ds2 =

(
1− 2m

r

)
dt2 −

(
1− 2m

r

)−1
dr2 − r2dΩ2,

where dΩ2 = sin2ϕ dθ2 +dϕ2 is the metric of the unit 2-sphere, of area 4π. (We
assume that the radius rc of the central object is greater than the Schwartzschild
radius 2m. The solution is then valid for r > rc.)

Define a coordinate change r = f(r′), where r′ = r for r /∈ (a, b), while r′ 6= r
for r ∈ (a, b) (the hole). Do not change the other coordinates. See Figure 1.
Then dr = f ′(r′) dr′, and ds2 in the new coordinate system is

G′(r′) : ds2 =

(
1− 2m

f(r′)

)
dt2 −

(
1− 2m

f(r′)

)−1
f ′2(r′) dr′2 − f2(r′) dΩ2.

The coordinate change is simply a relabeling of the events in the spacetime.
As the vacuum field equation is generally covariant, G′(r′) is, with G(r), a

solution. G(r) and G′(r′) represent the same gravitational field on the same
spacetime manifold of events. They are physically equivalent. For example, the
sphere at r′ in G′(r′) has area 4πf2(r′) = 4πr2, as does the sphere at r in G(r).

Now replace r′ with r in G′(r′) to obtain

G′(r) : ds2 =

(
1− 2m

f(r)

)
dt2 −

(
1− 2m

f(r)

)−1
f ′2(r) dr2 − f2(r) dΩ2.

G′(r) is a solution to the vacuum field equation, as it has the same mathematical
form as the solution G′(r′).

Henceforth we shall be interested only in G(r) and G′(r), which I abbreviate
to G and G′.
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The Hole Argument. Under G the sphere at r has area 4πr2 and under G′

it has area 4πf2(r). Thus the solutions G and G′ are physically distinguishable.
The two solutions show that the field equation does not uniquely determine

the gravitational field of the central mass. The field equation is therefore unsat-
isfactory. Indeed, the argument shows that no generally covariant field equation
can be satisfactory. Our conclusion:

The field equation of general relativity is unsatisfactory.

Resolution. The hole argument starts with two gravitational fields, G and
G′, on the same spacetime and using the same coordinates. Its conclusion,
that no generally covariant field equation can be satisfactory, follows directly
from this. Thus the hole argument only shows that if a theory allows two
gravitational fields on the same spacetime, then it does not have a generally
covariant field equation. Turn this around: If a theory has a generally covari-
ant field equation, then it cannot consider two gravitational fields on the same
spacetime.

In general relativity a spacetime manifold and a gravitational field form an
indivisible unit. We are not free to start with a spacetime and then put a
gravitational field on it. For if we could, we could put a second field on the
spacetime and suffer the hole argument. In short: no gravitational field, no
spacetime.

This justifies Einstein’s words at the start of this note. It is remarkable that
such a deep result can be obtained from such simple considerations.

General relativity. General relativity considers G and G′ to live on dif-
ferent spacetime manifolds, say M and N . To distinguish them, rename their r
coordinates to rM and rN . Map an event EN ∈ N at rN to the event EM ∈M
with rM = f(rN ), with the other coordinates unchanged. Then the transforma-
tion maps G′ to G. For example, the radial term transforms properly:(

1− 2m

rM

)−1
dr2M =

(
1− 2m

f(rN )

)−1
(f(rN ) drN )

2
.

Under the physical correspondence EM ⇔ EN , all predictions of general
relativity are the same for G and G′. For example, EN is on a sphere of area
4πf2(rN ) and EM is on a sphere of area 4πr2M = 4πf2(rN ). And the field
equation at EN maps to the field equation at EM , geodesics through EN map
to geodesics through EM , etc. Thus in general relativity G and G′ are physically
indistinguishable.

I emphasize that we have been concerned here only with the concept of
spacetime in general relativity. We are not concerned with the “real” nature of
spacetime – even if that is a meaningful term. Just as Newtonian physics, special
relativity, and general relativity have radically different concepts of spacetime,
some future theory might have a radically different concept of spacetime from
general relativity.
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Applications. The hole argument is of intrinsic interest for what it tells us
about the nature of spacetime in general relativity. Its lessons are also important
in some applications of the theory. I discuss two.

1. The global positioning system (GPS) must take into account effects of
general relativity to function properly. The GPS thus models the Earth’s grav-
itational field with a spacetime metric. Misner writes5,

[The metric] defines not only the gravitational field that is assumed,
but also the coordinate system in which it is presented. There is
no other source of information about the coordinates apart from the
expression for the metric. It is also not possible to define the coor-
dinate system in any way that does not require a unique expression
for the metric. In most cases where the coordinates are chosen for
computational convenience, the expression for the metric is the most
efficient way to communicate clearly the choice of coordinates that
is being made.

The Schwartzschild solution G(r) illustrates this. The physical meaning of
the r coordinate can be read from the r2dΩ2 term: events on the sphere of area
4πr2 have radial coordinate r. The physical meaning of the t coordinate can
also be read off from G(r): for a clock at fixed r, θ, and φ, ds2 = (1− 2m/r)dt2.
This defines the coordinate time dt in terms of the time ds measured by the
clock. The physical meaning of the r and t coordinates in G′(r) is different.

2. The issues discussed here complicate the initial value problem for the
field equations of general relativity.6, 7 Consider first, for comparison, the initial
value problem for the source free Maxwell equations. The equations are of
first order. Initial data consist of E and B fields at an initial time t0. At t0
the fields must satisfy the source free Maxwell equations not containing a time
derivative: ∇·E = 0 and ∇·B = 0. Then there is a unique solution to all of the
Maxwell equations for t ≥ t0 which agrees with the initial data. The solution
uses coordinates (t, x, y, z) on a flat spacetime manifold. The coordinates and
the manifold are given in advance.

Now consider the vacuum field equations of general relativity. They are of
second order. Thus one might expect that data consisting of the solution and its
first derivatives on an initial spacelike 3-manifold, with some constraints from
the field equations, would uniquely determine the solution at later times. But no
such data can do this: any solution can be transformed to others by coordinate
transformations which leave the data fixed. The field equations cannot even
uniquely determine the topology of a manifold on which a solution is defined.8
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