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Abstract

We give a simple, elementary, direct, and motivated construction of
the geometric algebra over Rn.

Mathematics Subject Classification 2000. Primary 15A66.

Keywords: Geometric Algebra, Clifford Algebra.

1. Introduction. We give here a new construction of the geometric al-
gebra GA(n) over Rn with the standard inner product. (We then extend to
an inner product of arbitrary signature.) A construction of GA(n) proves that
a structure satisfying the axioms of GA(n) exists. Simply stating the axioms
and proceeding, as is commonly done, is a practical approach. But then there
is no guarantee that GA(n) exists, as the axioms might be inconsistent. A
mathematically complete presentation must show that GA(n) exists.

One can consider the construction given here as the latest step in the well
known sequence of constructions of number systems based on the natural num-
bers: the integers are equivalence classes of ordered pairs of natural numbers,
the rational numbers are equivalence classes of ordered pairs of integers, the
real numbers are Dedekind cuts or equivalence classes of Cauchy sequences of
rational numbers, and the inner product space Rn consists of n-tuples of real
numbers [3]. Each step in the sequence uses only the previously constructed
system. (It is a stretch to call Rn a “number system”, but it becomes one
when the geometric algebra structure is imposed on it. Then we do not need to
construct the standard complex numbers or quaternions, as they are embedded
in GA(2) and GA(3), respectively.)

My goal is to provide a construction of GA(n) suitable for someone with
only an elementary knowledge of Rn. The construction is simple, elementary,
direct, and motivated. Two features of the construction help make this so.

First, the construction uses only elementary properties of Rn. Some con-
structions use more advanced mathematical structures, such as tensor products.
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(Our construction is compared to others in Section 7.) The geometric algebra
GA(n) is a fundamental mathematical structure which is part of the essence of
Euclidean space. It therefore deserves a construction not using less fundamental
structures than Rn.

Second, the construction is based directly upon the two fundamental iden-
tities which distinguish GA(n): If e and f are orthonormal vectors in Rn, then

ee = 1, (1)

ef = −fe. (2)

Eqs. (1) and (2) motivate our construction.
GA(n) is a 2n dimensional vector space containing Rn which is also an

associative algebra with identity. Its vectors are called multivectors. In addition,
Eqs. (1) and (2) are satisfied. We list the vector space and algebra axioms for
reference. Let a and b be scalars and u, v, and w be multivectors. Then

V1. u + v = v + u. A1. u(vw) = (uv)w.
V2. (u + v) + w = u + (v + w). A2. u(v + w) = uv + uw,
V3. u + 0 = u. (v + w)u = vu + wu.
V4. u + (−u) = 0. A3. (au)v = u(av) = a(uv).
V5. 1u = u. A4. 1u = u1 = u.
V6. a(bu) = (ab)u.
V7. a(u + v) = au + av.
V8. (a + b)u = au + bu.

2. The lemma. Let {e1, e2, . . . , en} be an orthonormal basis for Rn. If we
are to be able to multiply an arbitrary number of vectors, then we must be able
to form sequences of e’s:

E = ei1ei2 · · · eir . (3)

A given e may occur more than once, and there is no specified order for the
e’s. Denote the empty sequence by 1. For now, the sequences are uninterpreted
symbols, but they will become products.

Let E ′ be another sequence of the form Eq. (3), which is obtained from E
by (i) exchanging pairs of adjacent and unequal e’s in E, and (ii) inserting and
deleting pairs of adjacent and equal e’s. Write T (E) = E ′. Call T even or odd
according as Ne, the number of exchanges in T , is even or odd.

If Eqs. (1) and (2) are to be true, then we need to set E ′ = ±E, according
as T is even or odd. There is however a question of consistency, as many T s
transform E to E ′. Will T be always even or always odd? The answer is yes:

Lemma. For given E and E ′, all T with T (E) = E ′ are even or all are odd.
Proof. Let G(E) be the number of times a subscript in E is greater than

a subscript to its right. For example, G(e2e1e5e5e4) = 3. Exchanging a pair of
adjacent and unequal e’s in E changes G by ±1, and so changes the parity of
G, i.e., changes G from even to odd or odd to even. Inserting or deleting a pair
of adjacent and equal e’s changes G by an even number, and so does not change
its parity. Thus T is even or odd according as G(E) and G(E ′) have the same
or different parity.
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3. Construction of the vector space GA(n). If there is an even T
with T (E) = E ′, set E ′ = E and −E ′ = −E. For example, e2e3e1e3 =
e1e2. Eq. (1) is a special case: eiei = 1. The relation “=” is an equivalence
relation. For example, it is symmetric. For if E ′ = E, then there is an even
T with T (E) = E ′. Then T−1(E ′) = E. (For T−1 undo, in reverse order, the
exchanges, insertions, and deletions of T .) Since T−1 is even, E = E ′. Similarly,
if −E ′ = −E, then −E = −E ′.

If there is an odd T with T (E) = E ′, set E ′ = −E and −E = E ′. For
example, e3e2e1e3 = −e1e2. Eq. (2) is a special case: eiej = −ejei for i 6= j.
The relation “=” remains an equivalence relation. For example, it remains
symmetric by definition.

The negatives of the members of an equivalence class form another class:
(E ′ = E)⇔ (−E ′ = −E) and (E ′ = −E)⇔ (−E ′ = E).

The vector space GA(n) is the set of linear combinations of the equivalence
classes. Take the classes to be linearly independent, except for a class and its
negative. The vector space axioms V1-V8 are automatically satisfied.1

Each equivalence class has a unique member ±B, where B is of the form

B = ei1ei2 · · · eir , i1 < i2 < · · · < ir. (4)

Those equivalence classes containing a B form a basis for the vector space
GA(n). There are 2n such sequences (each of the n e’s can appear or not).
Thus the dimension of GA(n) is 2n.

4. Construction of the algebra GA(n). Let E = ei1ei2 · · · eir and
F = ej1ej2 · · · ejs . Define the geometric product of E and F :

EF = (ei1ei2 · · · eir ) (ej1ej2 · · · ejs) = ei1ei2 · · · eirej1ej2 · · · ejs .

The product is well defined on equivalence classes: If E = E ′ and F = F ′,
then EF = E ′F ′.

The product is obviously associative. Thus we can now consider the se-
quences in Eq. (3) to be products of e’s with parentheses removed.

Extend the geometric product by linearity to all of GA(n):(∑
i

aiEi

)∑
j

bjFj

 =
∑
i,j

aibjEiFj . (5)

The product remains well defined.

1 Note added 13 May, 2007.
The vector space GA(n) consists of formal linear combinations of the equivalence classes,

making identifications demanded by vector space operations (e.g., 2e1 + 4e1 = 6e1) and by
the requirement that E + (−E) = 0 (e.g., e1e2 + e2e1 = 0).

More technically, let F be the free vector space over the equivalence classes. (See, for
example, http://planetmath.org/?op=getobj&from=objects&id=4196.) And let Z be the
subspace of F spanned by elements of the form E + (−E). Then GA(n) = F/Z.

Our modding out by Z is similar to some constructions of the tensor product of vector
spaces. For example, see http://www.math.harvard.edu/~tomc/math25/tensor.pdf.
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The geometric product defined by Eq. (5) satisfies axioms A1-A4.

5. Other orthonormal bases. Even though we constructed GA(n) using
{ei}, this orthonormal basis is not distinguished in GA(n): If {fi} is another
orthonormal basis, then the f ’s have the same properties as the e’s. To see this,
let fr =

∑
j arjej , r = 1, 2, . . . , n. Then

frfs =
∑
j,k

arjaskejek

=
∑
j=k

arjaskejek +
∑
j 6=k

arjaskejek

= fr · fs +
∑
j<k

(arjask − asjark)ejek. (6)

Since the fi are orthonormal, frfr = 1 and frfs = −fsfr for r 6= s. This
establishes Eqs. (1) and (2) for the f ’s.

Products of the f ’s span GA(n), since the e’s in the basis elements Eq. (4)
can be expressed in terms of the f ’s. It follows that the 2n products

fi1fi2 · · · fir , i1 < i2 < · · · < ir

are linearly independent.

We prove that fi1fi2 · · · fir above is an r-vector with respect to the e’s.2

First consider the reflection ei → gi = −veiv for some unit vector v. Then:

gi1gi2 · · · gir = (−vei1v)(−vei2v) · · · (−veirv) = ±vei1ei2 · · · eirv.

I claim that gi1gi2 · · · gir is an r vector. For ease of notation, we take a specific
case which shows all of the possibilities:

g1g2 = (a1e1 + a2e2 + a2e3 + a4e4)(e1e2)(a1e1 + a2e2 + a2e3 + a4e4)

= (e1e2)(−a1e1 − a2e2 + a3e3 + a4e4)(a1e1 + a2e2 + a3e3 + a4e4). (7)

The terms in −a1e1 − a2e2 + a3e3 + a4e4 whose index is in the set {1, 2} of
indices in e1e2 appear with the opposite sign from those whose index is in
{3, 4}. Multiply the two vectors on the right side of Eq. (7). Then multiply the
terms of the product by the bivector e1e2. We show that the result is a bivector.

The “diagonal” terms of the product, e.g., −(a1e1)(a1e1) = −a21, are scalars.
Multiply them by e1e2. The result is a bivector. Products with indices both
from {1, 2} or both from {3, 4}, like −(a1e1)(a2e2) and (a3e3)(a4e4), are paired
with their negatives−(a2e2)(a1e1) and (a4e4)(a3e3). When added, they produce
0. The remaining terms have one index from {1, 2} and one from {3, 4}, e.g.,
−(a1e1)(a3e3) and (a3e3)(a2e2). Multiply them by e1e2. The result is a bivector.

The orthogonal transformation ei → fi is a composition of such reflec-
tions. Applying the above argument successively to each reflection shows that
fi1fi2 · · · fir is an r-vector.

2 This material added 10/22/07, modified 11/22/07 and 5/27/08.
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6. Other signatures. Let Rp,q be an inner product space with orthonormal
basis {ei}, where ei · ei = 1 for 1 ≤ i ≤ p and ei · ei = −1 for p < i ≤ p + q =
n. We extend our construction of GA(n) over Rn to the geometric algebra
GA(p, q) over Rp,q. In GA(p, q) the vector space axioms V1-V8, the algebra
axioms A1-A4, and Eq. (2) are unchanged. Only Eq. (1) changes, becoming
ee = e · e ( = ±1).

To accommodate this change, we need only extend the definition of even
and odd T . Let T (E) = E ′. Recall that Ne is the number of exchanges in T .
The lemma states that the parity of Ne depends only on E and E ′. Let Ni be
the net gain from T of the number of pairs of equal e’s with e · e = −1, due
to insertions and deletions of adjacent such pairs. Then Ni depends only on E
and E ′. Thus the parity of Ne +Ni depends only on E and E ′. Call T even or
odd according as Ne + Ni is even or odd. We have just proved that all T with
T (E) = E ′ are even or all are odd. This extends the lemma to inner product
spaces of arbitrary signature.

With the lemma extended, the construction of GA(p, q) proceeds verbatim
as for GA(n). However, some of the examples change. In particular, instead of
eiei = 1 as before, we now have eiei = ei · ei, as required.

If {fi} is another orthonormal basis, then by Sylvester’s theorem, fi · fi = 1
for p of the fi’s and fi ·fi = −1 for q of the fi’s. Then Eq. (6) again shows that
the f ’s have the same properties as the e’s.

7. Other Constructions. Emil Artin has given an elegant and simple ele-
mentary construction of GA(n) [2, p. 186]. Our construction is better motivated
and, I think, somewhat simpler.

Marcel Riesz’ construction in his Maryland lectures [6, Sec. 1.2-1.4] is in-
complete. Riesz introduces products of the form Eq. (3) for orthonormal basis
vectors {ei} and stipulates that eiei = 1 and eiej = −ejei for i 6= j. (Our Eqs.
(1) and (2).) But to show that these rules can be consistently applied, he needs
something analogous to our lemma, which he does not supply. And once it is
supplied, the associativity of the geometric product is trivial, as we have seen.
Then Riesz’s proof of the associativity in Sec. 1.3 becomes superfluous.

Ambjorn Naeve and Lars Svensson have given a construction which uses
concepts from abstract algebra (rings, totally ordered sets, ideals) [5], although
it could be reexpressed in more elementary terms.

R.D. Arthan has given a “minmalist” construction of the geometric algebra
[1].3

Pertti Lounesto has catalogued several nonelementary constructions of GA(n),
including those using a Grassman algebra, a tensor product, and a universal al-
gebra [4]. These constructions obscure the simplicity and elementary nature of
the geometric algebra.

Acknowledgment. I thank Martin Barrett for helpful comments.

3 Added 10/25/07.
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