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To Ellen



“The magic of this theory will hardly fail to impose itself on anybody
who has truly understood it.”

Albert Einstein, 1915

“The foundation of general relativity appeared to me then [1915],
and it still does, the greatest feat of human thinking about Nature,
the most amazing combination of philosophical penetration, physical
intuition, and mathematical skill.”

Max Born, 1955

“One of the principal objects of theoretical research in any depart-
ment of knowledge is to find the point of view from which the subject
appears in its greatest simplicity.”

Josiah Willard Gibbs

“There is a widespread indifference to attempts to put accepted the-
ories on better logical foundations and to clarify their experimental
basis, an indifference occasionally amounting to hostility. I am con-
cerned with the effects of our neglect of foundations on the educa-
tion of scientists. It is plain that the clearer the teacher, the more
transparent his logic, the fewer and more decisive the number of ex-
periments to be examined in detail, the faster will the pupil learn
and the surer and sounder will be his grasp of the subject.”

Sir Hermann Bondi

“Things should be made as simple as possible, but not simpler.”

Albert Einstein
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Preface

The purpose of this little book is to provide a clear and careful account of general
relativity with a minimum of mathematics. The book has fewer prerequisites
than other texts, and less mathematics is developed. The prerequisites are single
variable calculus, a few basic facts about partial derivatives and line integrals,
and a little matrix algebra. A little knowledge of physics is useful but not
essential. The algebra of tensors plays only a minor role.1 (Similarly, many
elementary differential geometry texts develop the intrinsic geometry of curved
surfaces without using tensors.)

Despite the book’s brevity and modest prerequisites, it is a serious introduc-
tion to the theory and applications of general relativity which demands careful
study. It can be used as a textbook for general relativity or as an adjunct to
standard texts. It is also suitable for self-study by more advanced students.

All this should make general relativity available to a wider audience than
before. A well prepared sophomore can learn about exciting current topics such
as curved spacetime, black holes, the big bang, dark energy, and the accelerating
universe.

Chapter 1 is a self-contained introduction to those parts of special relativity
we require for general relativity. We take a nonstandard approach to the metric,
analogous to the standard approach to the metric in Euclidean geometry. In
geometry, distance is first understood geometrically, independently of any coor-
dinate system. If coordinates are introduced, then distances can be expressed in
terms of coordinate differences: ∆s2 = ∆x2 + ∆y2. The formula is important,
but the geometric meaning of the distance is fundamental.

Analogously, we define the spacetime interval of special relativity physically,
independently of any coordinate system. If inertial frame coordinates are in-
troduced, then the interval can be expressed in terms of coordinate differences:
∆s2 = ∆t2 − ∆x2 − ∆y2 − ∆z2. The formula is important, but the physical
meaning of the interval is fundamental. This approach to the metric provides
easier access to and deeper understanding of special and general relativity, and
facilitates the transition from special to general relativity.

1 The notion of covariant and contravariant indices is developed and used in one page of
the text.
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Chapter 2 introduces the four fundamental principles of general relativity
as postulates. The purpose of the postulates is not to achieve rigor – which
is neither desirable nor possible in a book at this level – but to state clearly
the principles, and to exhibit clearly the relationship to special relativity and
the analogy with surfaces. The first three principles are expressed in terms
of local inertial frames, which tells us their physical meaning. They are then
translated to global coordinates, which is necessary for calculations. The fourth
principle, the field equation, is then motivated and stated. Finally, an interesting
consequence of the field equation relating curvatures and density is obtained.

The first two chapters systematically exploit the mathematical analogy which
led to general relativity: a curved spacetime is to a flat spacetime as a curved
surface is to a flat surface. Before introducing a spacetime concept, its analog
for surfaces is presented. This is not a new idea, but it is used here more system-
atically than elsewhere. For example, when the metric ds of general relativity
is introduced, the reader has already seen a metric in three other contexts.

Chapter 3 solves the field equation for a spherically symmetric spacetime to
obtain the Schwarzschild metric. The geodesic equations are then solved and
applied to the classical solar system tests of general relativity. There is a section
on the Kerr metric, which includes gravitomagnetism and the Gravity Probe B
experiment. The chapter closes with sections on the double pulsar and black
holes. In this chapter, as elsewhere, I have tried to provide the cleanest possible
calculations.

Chapter 4 applies general relativity to cosmology. We obtain the Robertson-
Walker metric in an elementary manner without the field equation. We review
the evidence for a spatially flat universe with a cosmological constant. We
then apply the field equation with a cosmological constant to a spatially flat
Robertson-Walker spacetime. The solution is given in closed form. Recent
astronomical data allow us to specify all parameters in the solution, giving the
new “standard model” of the universe with dark matter, dark energy, and an
accelerating expansion.

Many recent spectacular astronomical discoveries and observations are rel-
evant to general relativity. They are described at appropriate places in the
book.

Some tedious (but always straightforward) calculations have been omitted.
They are best carried out with a computer algebra system. Some material has
been placed in about 20 pages of appendices to keep the main line of development
visible. They may be omitted without loss of anything essential. Appendix 1
gives the values of various physical constants. Appendix 2 contains several ap-
proximation formulas used in the text.
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Chapter 1

Flat Spacetimes

1.1 Spacetimes

Fig. 1.1: Albert Einstein,
1879-1955.

The general theory of relativity is our best the-
ory of space, time, and gravity. Albert Einstein
created the theory during the decade following
the publication of his special theory of relativ-
ity in 1905. The special theory is a theory of
space and time which does not take gravity into
account. The general theory, published in 1915,
generalizes the special theory to include gravity.
It is commonly felt to be the most beautiful of
all physical theories.

We will explore many fascinating aspects of
relativity, such as the behavior of moving clocks,
curved spacetimes, Einstein’s field equation, the
perihelion advance of Mercury, black holes, the
big bang, the accelerating expansion of the uni-
verse, and dark energy. Let us begin!
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1 Flat Spacetimes 1.1 Spacetimes

Definitions. We give definitions of three fundamental concepts used through-
out this book: event, spacetime, and worldline.

Event. In geometry the fundamental entities are points. A point is a
specific place. In relativity the fundamental entities are events. An event is
a specific time and place. It has neither temporal nor spatial extension. For
example, the collision of two particles is an event. To be present at the event,
you must be at the right place at the right time.

Spacetime. A flat or curved surface is a set of points. (We shall prefer
the term “flat surface” to “plane”.) Similarly, a spacetime is a set of events.
Chapter 3 examines the spacetime around the Sun. We will study the motion
of planets and light in the spacetime. Chapter 4 examines a spacetime for the
entire universe! We will study the origin and evolution of the universe.

A flat spacetime is a spacetime without significant gravity. Special relativity
describes flat spacetimes. A curved spacetime is a spacetime with significant
gravity. General relativity describes curved spacetimes.

There is nothing mysterious about the words “flat” or “curved” attached to
a spacetime. They are chosen because of a remarkable analogy, already hinted
at, concerning the mathematical description of a spacetime: a curved spacetime
is to a flat spacetime as a curved surface is to a flat surface. The analogy will
be a major theme of this book: we will use our intuitive understanding of flat
and curved surfaces to guide our understanding of flat and curved spacetimes.

Worldline. A curve in a surface is a continuous succession of points in the
surface. A worldline in a spacetime is a continuous succession of events in the
spacetime. A moving particle or a pulse of light emitted in a single direction is
present at a continuous succession of events, its worldline. Even if a particle is
at rest, time passes, and the particle has a worldline. A planet has a worldline
in the curved spacetime around the Sun. Note that if the planet returns to a
specific point in space during its orbit, then it does not return to the same event
in the spacetime, as it returns at a later time.

Time. Relativity theory contradicts everyday views of time. The most
direct illustration of this is the Hafele-Keating experiment, which we now de-
scribe.

The length of a curve between two given points depends on the curve. Sim-
ilarly, the time between two given events measured by a clock moving between
the events depends on the clock’s worldline! In 1971 J. C. Hafele and R. Keating
brought two atomic clocks together, placed one of them in an airplane which
circled the Earth, and then brought the clocks together again. Thus the clocks
had different worldlines between the event of their separation and the event
of their reunion. The clocks measured different times between the two events.
The difference was small, about 10−7 sec, but was well within the ability of the
clocks to measure. There is no doubt that the effect is real.

We shall see that relativity predicts the measured difference. We shall also
see that relativity predicts large differences between clocks whose relative speed
is close to that of light.
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1 Flat Spacetimes 1.1 Spacetimes

The best answer to the question “How can the clocks in the experiment pos-
sibly disagree?” is the question “Why should they agree?” After all, the clocks
were not connected. According to everyday ideas they should agree because
there is a universal time, common to all observers. It is the duty of clocks to re-
port this time. The concept of a universal time was abstracted from experience
with small speeds (compared to that of light) and clocks of ordinary accuracy,
where it is nearly valid. The concept permeates our daily lives; there are clocks
everywhere telling us the time. However, the Hafele-Keating experiment shows
that there is no universal time. Time, like distance, is route dependent.

Since clocks on different worldlines between two events measure different
times between the events, we cannot speak of the time between two events. But
clocks traveling together between the events will measure the same time between
the events. (Unless some adverse physical condition affects a clock’s rate.) Thus
we can speak of the time along a given worldline between the events.

The word “clock” here must be understood in the general sense of any physi-
cal process, e.g., the vibrations of a tuning fork, radioactive decays, or the aging
of an organism. Twins, each remaining close to one of the clocks during the
Hafele-Keating experiment, would age according to their clock. They would
thus be of slightly different ages when reunited.

The next three sections put forward three postulates for special relativity.
The inertial frame postulate asserts that certain natural coordinate systems,
called inertial frames, exist for a flat spacetime. The metric postulate asserts
a universal light speed and a slowing of clocks moving in inertial frames. The
geodesic postulate asserts that inertial particles (which we will define) and light
move in a straight line at constant speed in inertial frames.

Imagine two dimensional beings living in a flat surface. These surface
dwellers can no more imagine leaving their two spatial dimensions than we
can imagine leaving our three spatial dimensions. Before introducing a postu-
late for a flat spacetime, we introduce the analogous postulate formulated by
surface dwellers for a flat surface. The postulates for a flat spacetime use a time
dimension, but those for a flat surface do not.
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1 Flat Spacetimes 1.2 The Inertial Frame Postulate

1.2 The Inertial Frame Postulate

Planar Frames. Surface dwellers find it useful to label the points of their flat
surface with coordinates. They construct, using identical rigid rods, a square
grid and assign rectangular coordinates (x, y) to the nodes of the grid in the
usual way. See Fig. 1.2. Surface dwellers call the coordinate system a planar
frame. Fig. 1.3 shows the axes of two different planar frames.

Fig. 1.2: A planar frame. Fig. 1.3: Two planar frames.

The Planar Frame Postulate for a Flat Surface
A planar frame can be constructed with any point P as origin and
with any orientation.

Fig. 1.4: A simple ac-
celerometer. Accelera-
tion causes the weight
to move from the cen-
ter.

Inertial Frames. Imagine that you are an astro-
naut in interstellar space, where gravity is insignificant.
If your rocket is not firing and your ship is not spinning,
then you will feel no forces acting on you and you can
float freely in your cabin. If your spaceship is accelerat-
ing, then you will feel a force pushing you back against
your seat. If the ship turns to the left, then you will feel
a force to the right. If the ship is spinning, you will feel
a force outward from the axis of spin. Call these forces
inertial forces.

Accelerometers measure inertial forces. Fig. 1.4
shows a simple accelerometer consisting of a weight held
at the center of a cubical frame by identical springs. In-
ertial forces cause the weight to move from the center.

An object which experiences no inertial forces is
called an inertial object.

It is useful to label the events in a flat spacetime with coordinates (t, x, y, z).
The coordinates specify when (the t coordinate) and where (the (x, y, z) coor-
dinates) the event occurs, i.e., they completely specify the location of the event
in the spacetime. We now describe how to attach coordinates to events. The
procedure is idealized, but it gives a clear physical meaning to the coordinates.
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1 Flat Spacetimes 1.2 The Inertial Frame Postulate

Fig. 1.5: An inertial
lattice.

To specify where an event occurs, construct, us-
ing identical rigid rods, an inertial cubical lattice. See
Fig. 1.5. Assign rectangular coordinates (x, y, z) to the
nodes of the lattice in the usual way. To specify when an
event occurs, place a clock at each node of the lattice.
Then the times of events at a given node can be speci-
fied by reading the clock at that node. But to compare
meaningfully the times of events at different nodes, the
clocks must be in some sense synchronized. As we shall
see soon, this is not a trivial matter. (Remember, there
is no universal time.) For now, assume that the clocks
have been synchronized. Then specify when an event
occurs by using the time, t, on the clock at the node nearest the event.

The four dimensional coordinate system (t, x, y, z) obtained in this way from
an inertial cubical lattice with synchronized clocks is called an inertial frame.
The event (0, 0, 0, 0) is the origin of the inertial frame.

If you are an inertial object then you can construct an inertial frame in which
you are at rest. If fact, you can do this in many ways:

The Inertial Frame Postulate for a Flat Spacetime

An inertial frame can be constructed with any event E as origin,
any inertial object at rest in it, and any spatial orientation.

Fig. 1.6: Worldlines.

If we suppress one or two of the spatial coordinates
of an inertial frame, then we can draw a spacetime di-
agram and depict worldlines. For example, Fig. 1.6
shows the worldlines of two particles. One is at rest on
the x-axis and the other moves away from x = 0 and
then returns more slowly.

Exercise 1.1. Show that the worldline of an object moving along the x-axis
at constant speed v is a straight line with slope v.1

Exercise 1.2. Describe the worldline of an object moving in a circle in the
z = 0 plane at constant speed. You need three dimensions for this, two of space
and one of time.

1Spacetime diagrams are usually constructed with t as the vertical axis and x the horizontal
axis. Then the slope is 1/v.
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1 Flat Spacetimes 1.2 The Inertial Frame Postulate

Synchronization. We return to the matter of synchronizing the clocks of
an inertial frame. We can directly compare side-by-side clocks to see if they
are synchronized. But what does it mean to say that separated clocks are
synchronized? Einstein realized that the answer to this question is not given to
us by Nature; rather, it must be answered with a definition.

Exercise 1.3. Why not simply bring the clocks together, synchronize them,
move them to the nodes of the lattice, and call them synchronized?

We might try the following definition. Send a signal from a node P of the
lattice at time tP according to the clock at P . Let it arrive at a node Q of
the lattice at time tQ according to the clock at Q. Let the distance between
the nodes be D and the speed of the signal be v. Say that the clocks are
synchronized if

tQ = tP +D/v. (1.1)

Intuitively, the term D/v compensates for the time it takes the signal to get to
Q. This definition is flawed because it contains a logical circle. For v is defined
by a rearrangement of Eq. (1.1): v = D/(tQ − tP ). Synchronized clocks cannot
be defined using v because synchronized clocks are needed to define v.

We adopt the following definition, essentially due to Einstein. Emit a pulse
of light from a node P at time tP according to the clock at P . Let it arrive at a
node Q at time tQ according to the clock at Q. Similarly, emit a pulse of light
from Q at time t′Q and let it arrive at P at t′P . The clocks are synchronized if

tQ − tP = t′P − t′Q, (1.2)

i.e., if the times in the two directions are equal.
Reformulating the definition makes it more transparent. If the pulse from

Q to P is the reflection of the pulse from P to Q, then t′Q = tQ in Eq. (1.2).
Let 2T be the round trip time: 2T = t′P − tP . Substitute into Eq. (1.2):

tQ = tP + T ; (1.3)

the clocks are synchronized if the pulse arrives at Q in half the time it takes for
the round trip.

Exercise 1.4. Explain why Eq. (1.2) is a satisfactory definition but Eq.
(1.1) is not.

There is a tacit assumption in the definition of synchronized clocks that the
two sides of Eq. (1.2) do not depend on the times that the pulses are sent:

Emit pulses of light from a node R at times tR and t′R according
to a clock at R. Let them arrive at a node S at times tS and t′S
according to a clock at S. Then

t′S − t′R = tS − tR. (1.4)

With this assumption we can be sure that synchronized clocks will remain so.

Exercise 1.5. Show that with the assumption Eq. (1.4), T in Eq. (1.3) is
independent of the time the pulse is sent.
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1 Flat Spacetimes 1.2 The Inertial Frame Postulate

The inertial frame postulate asserts in part that clocks in an inertial lattice
can be synchronized according to the definition Eq. (1.2), or, in P. W. Bridge-
man’s descriptive phrase, we can “spread time over space”. Appendix 3 proves
this with the aid of an auxiliary assumption.

Redshifts. A rearrangement of Eq. (1.4) gives

∆so = ∆se, (1.5)

where ∆so = t′S − tS is the time between the observation of the pulses at S and
∆se = t′R− tR is the time between the emission of the pulses at R. (We use ∆s
rather than ∆t to conform to notation used later in more general situations.) If
a clock at R emits pulses of light at regular intervals to S, then Eq. (1.5) states
that an observer at S sees (actually sees) the clock at R going at the same rate
as his clock. Of course, the observer at S will see all physical processes at R
proceed at the same rate they do at S.

We will encounter situations in which ∆so 6= ∆se . Define the redshift

z =
∆so
∆se

− 1. (1.6)

Equations (1.4) and (1.5) correspond to z = 0. If, for example, z = 1 (∆so/∆se
= 2), then the observer at S would see clocks at R, and all other physical
processes at R, proceed at half the rate they do at S.

In Exercise 1.6 we shall see that Eq. (1.5) is violated, i.e., z 6= 0, if the
emitter and observer are in relative motion in a flat spacetime. This is called
a Doppler redshift . Later we shall see two other kinds of redshift: gravitational
redshifts in Sec. 2.2 and expansion redshifts in Sec. 4.1. The three types of
redshifts have different physical origins and so must be carefully distinguished.

Redshifts are often expressed in terms of frequencies. If the two “pulses”
of light in Eq. (1.6) are successive wavecrests of light emitted at frequency
fe = (∆se)

−1 and observed at frequency fo = (∆so)
−1, then the equation can

be written

z =
fe
fo
− 1. (1.7)
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1 Flat Spacetimes 1.3 The Metric Postulate

1.3 The Metric Postulate

Flat Surface Metric. Let P and Q be points in a flat surface. Different curves
between the points have different lengths. But surface dwellers single out the
straight line distance ∆s and call it the proper distance between the points.

This definition of proper distance is in geometric terms, without using coor-
dinates. If a planar frame is introduced, then the Pythagorean theorem gives a
simple formula for ∆s:

The Metric Postulate for a Flat Surface
Let ∆s be the proper distance between two points. Let the points
have coordinate differences (∆x,∆y) in a planar frame. Then

∆s2 = ∆x2 + ∆y2. (1.8)

Here ∆s2 means (∆s)2, ∆x2 means (∆x)2, etc.

Fig. 1.7: ∆s2 = ∆x2 +
∆y2 = ∆x̄2 + ∆ȳ2.

The coordinate differences ∆x and ∆y between
P and Q are different in different planar frames. See
Fig. 1.7. However, the particular combination of the
differences in Eq. (1.8) will always produce ∆s. Nei-
ther ∆x nor ∆y alone has a geometric significance.
Together they do: they determine ∆s, which has a
direct geometric significance, independent of any co-
ordinate system.

Flat Spacetime Metric. Let E and F be
events in a flat spacetime. There is a distance-like
quantity ∆s between E and F , called the interval
between them. The definition of ∆s in a flat space-
time is more complicated than in a flat surface, because there are three ways in
which events can be, we say, separated :

• If E and F can be on the worldline of a pulse of light, they are lightlike
separated. Then define ∆s = 0 for E and F . (The reason for this peculiar
definition will become clear later.)

• If E and F can be on the worldline of an inertial clock, they are timelike
separated. Then define ∆s to be the time between the events measured
by the inertial clock. This is the proper time between E and F . (Clocks
on other worldlines between the events will measure different times.)

• If E and F can be simultaneously at the ends of an inertial rod – simulta-
neously in the sense that light flashes emitted at E and F reach the center
of the rod simultaneously – they are spacelike separated. Then define |∆s|
to be the length the rod. (The reason for the absolute value will become
clear in Eq. (1.12).) This is the proper distance between E and F .

This definition of the spacetime interval ∆s just given is in physical terms,
without using coordinates. If an inertial frame is introduced, then the metric
postulate for a flat spacetime asserts a simple formula for the interval:

8



1 Flat Spacetimes 1.3 The Metric Postulate

The Metric Postulate for a Flat Spacetime

Let ∆s be the interval between two events. Let the events have
coordinate differences (∆t,∆x,∆y,∆z) in an inertial frame. Then

∆s2 = ∆t2 −∆x2 −∆y2 −∆z2. (1.9)

The coordinate differences between E and F , including the time coordinate
difference, are different in different inertial frames. For example, suppose that
an inertial clock measures a proper time ∆s between two events. In an inertial
frame in which the clock is at rest, ∆t = ∆s and ∆x = ∆y = ∆z = 0. In
an inertial frame in which the clock is moving, at least one of ∆x, ∆y, ∆z
will not be zero. However, the particular combination of the differences in Eq.
(1.9) will always produce ∆s. None of the coordinate differences has a physical
significance independent of the particular inertial frame chosen. Together they
do: they determine ∆s, which has a direct physical significance, independent of
any inertial frame.

This shows that the joining of space and time into spacetime is not an
artificial technical trick. Rather, in the words of Hermann Minkowski, who
introduced the spacetime concept in 1908, “Space by itself, and time by itself,
are doomed to fade away into mere shadows, and only a kind of union of the
two will preserve an independent reality.” The new relationship between space
and time in special relativity is a radical change from the earlier view that space
and time are independent.

Minkowskian geometry, with mixed signs in its expression for the interval,
Eq. (1.9), is different from Euclidean geometry. But it is a perfectly valid
geometry, the geometry of a flat spacetime. It will, however, take you a while
to get used to it.

Physical Meaning of the Metric Postulate. We discuss the physical
meaning of the metric postulate formula, Eq. (1.9). We do not need the y- and
z-coordinates for this, and so we use the formula in the form

∆s2 = ∆t2 −∆x2. (1.10)

We treat lightlike, timelike, and spacelike separated events individually.

Lightlike Separated. By definition, a pulse of light can move between
lightlike separated events, and ∆s = 0 for the events. From Eq. (1.10) the
speed of the pulse is |∆x|/∆t = 1 . The metric postulate asserts that the speed
c of light always has the value c = 1 in all inertial frames.

The assertion is that the speed is the same in all inertial frames; the actual
value c = 1 is a convention: Choose the distance light travels in one second
– about 3 × 1010 cm – as the unit of distance. Call this one (light) second of
distance. (You are probably familiar with a similar unit of distance – a light
year.) Then 1 cm = 3.3× 10−11 sec. With this convention c = 1, and all other
speeds are expressed as a dimensionless fraction of the speed of light. Ordinarily
the fractions are very small. For example, 3 km/sec = .00001.
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1 Flat Spacetimes 1.3 The Metric Postulate

Suppose Ellen is walking in a moving train. Her speed in a rest frame of the
train (i.e., an inertial frame in which the train is at rest) is different from her
speed in a rest frame of the ground. But according to the metric postulate, a
pulse of light is different: it has the same speed in the two frames. You must
understand this difference to feel the full force of the postulate.

Timelike Separated. By definition, an inertial clock can move between
timelike separated events, and it measures the proper time ∆s between the
events. The speed of the clock is v = |∆x|/∆t . From Eq. (1.10),

∆s = (∆t2 −∆x2)
1
2 = [1− (∆x/∆t)2]

1
2 ∆t = (1− v2)

1
2 ∆t. (1.11)

Fig. 1.8: The time dilation fac-

tor ∆t/∆s = (1− v2)−
1
2 vs. v.

Thus ∆s ≤ ∆t. This is called time dilation.
Informally, “moving clocks run slowly”. Fig.
1.8 shows the graph of the time dilation factor
∆t/∆s = (1 − v2)−

1
2 . For normal speeds, v is

very small, v2 is even smaller, and so ∆s ≈ ∆t,
as expected. But as v → 1, (1− v2)−

1
2 →∞.

Exercise 1.6. Investigate the Doppler red-
shift. A source of light pulses moves with speed
v directly away from an observer at rest in an
inertial frame. Let ∆te be the time between the
emission of pulses, and ∆to be the time between
their reception by the observer.

a. Show that ∆to = ∆te + v∆te .
b. Ignore time dilation in Eq. (1.6) by setting ∆s = ∆t. Show that z = v

in this approximation.
c. Show that the exact formula is z = [(1 + v)/(1− v)]

1
2 − 1. Use the result

of part a.

Spacelike Separated. By definition, the ends of an inertial rigid rod of
proper length |∆s| can be simultaneously present at spacelike separated events.
Appendix 5 shows that ∆t < |∆x| and that the speed of the rod in I is v =
∆t/|∆x| (that is not a typo).

Exercise 1.7. Show that a calculation similar to Eq. (1.11) gives

|∆s| = (1− v2)
1
2 |∆x|. (1.12)

(Since ∆s2 < 0 we must take the absolute value |∆s|.) Thus |∆s| ≤ |∆x|.
Appendix 6 discusses a different phenomenon, called length contraction, of

moving rods.

10



1 Flat Spacetimes 1.3 The Metric Postulate

Connections. We have just seen that the physical meaning of the met-
ric postulate is different for lightlike, timelike, and spacelike separated events.
Strange as the individual meanings might seem, they are logically connected:
the meaning for lightlike separated events (c = 1) implies those for timelike and
spacelike separated events. We now prove this for the timelike case. The proof
is quite instructive. The spacelike case is less so; it is relegated to Appendix 5.

Let timelike separated events E and F have coordinate differences (∆t, ∆x)
in an inertial frame I. An inertial clock C moving between the events measures
the proper time ∆s between them. We show that if c=1 in all inertial frames,
then ∆s2 = ∆t2 −∆x2. Time dilation, Eq. (1.11), follows.

Fig. 1.9: ∆s2 = ∆t2 − ∆x2 for timelike sepa-
rated events. The path of the light pulse in I is
dotted.

C is attached to an end of
a rod R oriented perpendicular
to its motion in I. At E send
a light pulse from C along R
toward a mirror M attached to
the other end of R. Choose the
length of R so that the pulse is
reflected back to C at F . From
C’s point of view, R is at rest
and the light simply travels up
it and returns. In I, the light traverses the dotted path shown in Fig. 1.9. The
figure also shows the clock, rod, and mirror at three different times: when the
light is sent from C, reflects off M , and returns to C.

Refer to the rightmost triangle in Fig. 1.9. Since c = 1 in I, the light travels
a distance ∆t in I. This gives the labeling 1

2∆t of the hypotenuse. C is at rest
in some inertial frame I ′. In I ′, the light travels the length of the rod twice in
the proper time ∆s between E and F measured by C. Since c = 1 in I ′, the
length of the rod is 1

2∆s in I ′. This gives the labeling 1
2∆s of the altitude of

the triangle. (There is a tacit assumption here that the length of R is the same
in I and I ′. Appendix 6 discusses this.) Apply the Pythagorean theorem to the
triangle to obtain ∆s2 = ∆t2 −∆x2. This completes the proof.

In short, since the light travels farther in I than in I ′ (twice the hypotenuse
vs. twice the altitude) and the speed c = 1 is the same in I and I ′, the time (=
distance/speed) between E and F is longer in I than for C. This shows, in a
most graphic way, that accepting a universal light speed forces us to abandon a
universal time.

Looking at it another way, we see how it is possible for a single pulse of light
to have the same speed in inertial frames moving with respect to each other:
the speed (= distance/time) between two events can be the same because both
the distance and the time between the events are different in the two frames.

Exercise 1.8. Criticize the following argument. We have just seen that
the time between two events is greater in I than in I ′. But exactly the same
argument carried out in I ′ will show that the time between the events is greater
in I ′ than in I. This is a contradiction.

11



1 Flat Spacetimes 1.3 The Metric Postulate

Local Forms. The metric postulate for a planar frame, Eq. (1.8), gives only
the distance along a straight line between two points. The differential version
of Eq. (1.8) gives the distance ds between neighboring points along any curve:

The Metric Postulate for a Flat Surface, Local Form

Let ds be the distance between neighboring points on a curve. Let
the points have coordinate differences (dx, dy) in a planar frame.
Then

ds2 = dx2 + dy2. (1.13)

Thus, if a curve is parameterized (x(p), y(p)), a ≤ p ≤ b, then

ds2 =

[(
dx

dp

)2

+

(
dy

dp

)2
]
dp2,

and the length of the curve is

s =

∫ b

p=a

ds =

∫ b

p=a

[(
dx

dp

)2

+

(
dy

dp

)2
] 1

2

dp .

The formula can give different lengths for different curves between two points.

Exercise 1.9. Use the formula to calculate the circumference of the circle
x = r cos θ, y = r sin θ, 0 ≤ θ ≤ 2π.

The metric postulate for an inertial frame Eq. (1.9) is concerned only with
times measured by inertial clocks. The differential version of Eq. (1.9) gives
the time ds measured by any clock between neighboring events on its worldline:

The Metric Postulate for a Flat Spacetime, Local Form

If a pulse of light can move between neighboring events, set ds =
0. If a clock can move between the events, let ds be the time it
measures between them. Let the events have coordinate differences
(dt, dx, dy, dz) in an inertial frame. Then

ds2 = dt2 − dx2 − dy2 − dz2. (1.14)

From Eq. (1.14), if the worldline of a clock is parameterized

(t(p), x(p), y(p), z(p)), a ≤ p ≤ b,

then the time s to traverse the worldline, as measured by the clock, is

s =

∫ b

p=a

ds =

∫ b

p=a

[(
dt

dp

)2

−
(
dx

dp

)2

−
(
dy

dp

)2

−
(
dz

dp

)2
] 1

2

dp .

In general, clocks on different worldlines between two events will measure dif-
ferent times between the events.

12



1 Flat Spacetimes 1.3 The Metric Postulate

Exercise 1.10. Let a clock move between two events with a time difference
∆t. Let v be the small constant speed of the clock. Show that ∆t−∆s ≈ 1

2v
2∆t.

Exercise 1.11. Consider a simplified Hafele-Keating experiment. One
clock remains on the ground and the other circles the equator in an airplane to
the west – opposite to the Earth’s rotation. Assume that the Earth is spinning
in an inertial frame I. Notation: ∆t is the duration of the trip in the inertial
frame, vr is the velocity in I of the clock remaining on the ground, and ∆sr is
the time the clock measures for the trip. Define va and ∆sa similarly for the
airplane. Use Exercise 1.10 for each clock to show that the difference between
the clocks due to time dilation is ∆sa − ∆sr = 1

2 (v2
a − v2

r)∆t. Suppose that
∆t = 40 hours and the speed of the airplane with respect to the ground is 1000
km/hr. Substitute to obtain ∆sa −∆sr = 1.4× 10−7 s.

Exercise 2.1 shows that general relativity predicts a further difference be-
tween the clocks.

Experimental Evidence. Because general relativistic effects play a part in
the Hafele-Keating experiment (see Exercise 2.1), and because the uncertainty
of the experiment is large (±10%), this experiment is not a precision test of time
dilation for clocks. Much better evidence comes from observations of subatomic
particles called muons. When at rest the average lifetime of a muon is 3× 10−6

sec. According to the differential version of Eq. (1.11), if the muon is moving
in a circle with constant speed v, then its average life, as measured in the
laboratory, should be larger by a factor (1− v2)−

1
2 . An experiment performed

in 1977 showed this within an experimental error of .2%. In the experiment
v = .9994, giving a time dilation factor ∆t/∆s = (1− v2)−

1
2 = 29! The circular

motion had an acceleration of 1021 cm/sec2, and so this is a test of the local
form Eq. (1.14) of the metric postulate as well as the original form Eq. (1.9).

There is excellent evidence for a universal light speed. First of all, realize
that if clocks at P and Q are synchronized according to the definition Eq.
(1.2), then the speed of light from P to Q is equal to the speed from Q to P .
We emphasize that with our definition of synchronized clocks this equality is a
matter of definition which can be neither confirmed nor refuted by experiment.

The speed c of light can be measured by sending a pulse of light from a point
P to a mirror at a point Q at distance D and measuring the elapsed time 2T for
it to return. Then c = 2D/2T ; c is a two way speed, measured with one clock.
Again by our definition of synchronized clocks, this two way speed is equal to
the one way speed between P and Q. Thus the one way speed of light can be
measured by measuring the two way speed.

In a famous experiment performed in 1887, A. A. Michelson and E. W.
Morley compared the two way speed of light in perpendicular directions. Their
experiment is described in Appendix 7. It was repeated in 1930 by G. Joos,
who found that any difference in the two way speeds is less than six parts in
1012. A modern version of the experiment was performed in 1979 by A. Brillit
and J. L. Hall. They found that any difference in the two way speed of light in
perpendicular directions is less than four parts in 1015. See Appendix 7.
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1 Flat Spacetimes 1.3 The Metric Postulate

Another experiment, performed by R. J. Kennedy and E. M. Thorndike in
1932, found the two way speed of light to be the same, within six parts in 109,
on days six months apart, during which time the Earth moved to the opposite
side of its orbit. See Appendix 7. Inertial frames in which the Earth is at rest
on days six months apart move with a relative speed of 60 km/sec (twice the
Earth’s orbital speed). A more recent experiment by D. Hils and Hall improved
the result by over two orders of magnitude.

These experiments provide good evidence that the two way speed of light
is the same in different directions, places, and inertial frames and at different
times. They thus provide strong motivation for our definition of synchronized
clocks: If the two way speed of light has always the same value, what could be
more natural than to define synchronized clocks by requiring that the one way
speed have this value?

In all of the above experiments, the source of the light is at rest in the
inertial frame in which the light speed is measured. If light were like baseballs,
then the speed of a moving source would be imparted to the speed of light it
emits. Strong evidence that this is not so comes from observations of certain
neutron stars which are members of a binary star system and which emit X-ray
pulses at regular intervals. These systems are described in Sec. 3.1. If the
speed of the star were imparted to the speed of the X-rays, then various strange
effects would be observed. For example, X-rays emitted when the neutron star
is moving toward the Earth could catch up with those emitted earlier when it
was moving away from the Earth, and it would be seen coming and going at the
same time! See Fig. 1.10.

Fig. 1.10: The speed of light is independent of the
speed of its source.

This does not happen; an
analysis of the arrival times
of the pulses at Earth made
in 1977 by K. Brecher shows
that no more than two parts
in 109 of the speed of the
source is added to the speed
of the X-rays. (It is not
possible to “see” the neutron
star in orbit around its com-
panion directly. The speed of
the neutron star toward or away from the Earth can be determined from the
Doppler redshift of the time between pulses. See Exercise 1.6.)

Finally, recall from above that the universal light speed part of the metric
postulate implies the parts about timelike and spacelike separated events. Thus
the evidence for a universal light speed is also evidence for the other two parts.

The universal nature of the speed of light makes possible the modern defini-
tion of the unit of length: “The meter is the length of the path traveled by light
during the time interval of 1/299,792,458 of a second.” Thus, by definition, the
speed of light is 299,792,458 m/sec.
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1 Flat Spacetimes 1.4 The Geodesic Postulate

1.4 The Geodesic Postulate

Flat Surface Geodesics. It is convenient to use superscripts to distinguish
coordinates. Thus we use (x1, x2) instead of (x, y) for planar frame coordinates.

Fig. 1.11: A geodesic in a planar frame.

The line in Fig. 1.11 can be parameterized by the (proper) distance s from
(b1, b2) to (x1(s), x2(s)): x1(s) = cos(θ)s+ b1, x

2(s) = sin(θ)s+ b2. Differentiate
twice with respect to s to obtain

The Geodesic Postulate for a Flat Surface

Parameterize a straight line with arclength s . Then in every planar
frame

ẍi(s) = 0, i = 1, 2. (1.15)

(The overdots indicate derivatives: ẍi(s) = d 2xi/ds2.) The straight lines are
called geodesics.

Not all parameterizations of a straight line satisfy the geodesic differential
equations Eq. (1.15). For example, xi(p) = aip

3 + bi parameterizes the same
straight line as does xi(p) = aip+ bi.
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1 Flat Spacetimes 1.4 The Geodesic Postulate

Flat Spacetime Geodesics. It is convenient to use (x0, x1, x2, x3) instead
of (t, x, y, z) for inertial frame coordinates. Our third postulate for special rel-
ativity says that inertial particles and light pulses move in a straight line at
constant speed in an inertial frame, i.e., their equations of motion are

xi = aix
0 + bi, i = 1, 2, 3. (1.16)

(Differentiate to give dxi/dx0 = ai; the velocity is constant.) The same as-
sumption is made in prerelativity physics, where it is known as Newton’s first
law.

Set x0 = p, a parameter; a0 = 1; and b0 = 0, and find that worldlines of
inertial particles and light can be parameterized

xi(p) = aip+ bi, i = 0, 1, 2, 3 (1.17)

in an inertial frame. Eq. (1.17), unlike Eq. (1.16), is symmetric in all four
coordinates of the inertial frame. Also, Eq. (1.17) shows that the worldline is
a straight line in the spacetime. Thus “straight in spacetime” includes both
“straight in space” and “straight in time” (constant speed). See Exercise 1.1.
The worldlines are called geodesics.

Exercise 1.12. In Eq. (1.17) the parameter p = x0 . Show that the
worldline of an inertial particle can also parameterized with s, the proper time
along the worldline.

The Geodesic Postulate for a Flat Spacetime

Worldlines of inertial particles and pulses of light can be parameter-
ized with a parameter p so that in every inertial frame

ẍi(p) = 0, i = 0, 1, 2, 3. (1.18)

For inertial particles we may take p = s.

The geodesic postulate is a mathematical expression of our physical assertion
that inertial particles and light move in a straight line at constant speed in an
inertial frame.

Exercise 1.13. Make as long a list as you can of analogous properties of
flat surfaces and flat spacetimes.
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Chapter 2

Curved Spacetimes

2.1 Newton’s theory of gravity

Recall the analogy from Chapter 1: A curved spacetime is to a flat spacetime as
a curved surface is to a flat surface. We explored flat surfaces and flat spacetimes
in Chapter 1. In this chapter we generalize from flat surfaces and flat space-
times (spacetimes without significant gravity) to curved surfaces and curved
spacetimes (spacetimes with significant gravity). General relativity interprets
gravity as a curvature of spacetime.

Fig. 2.1: Isaac Newton,
1643-1727.

Before studying general relativity, we take a brief
look at Isaac Newton’s 1687 theory of gravity, the
prevailing theory of gravity when Einstein formu-
lated his theory.

Newton knew of the work of Johannes Kepler and
Galileo Galilei from the early seventeenth century.
Kepler discovered that the path of a planet is an
ellipse with the Sun at one focus. Galileo discovered
two important facts about objects falling near the
Earth’s surface: the acceleration is constant in time
and independent of the mass and composition of the
falling object.

Newton’s theory explained Kepler’s astronomical
and Galileo’s terrestrial findings as manifestations of
the same phenomenon. To understand how orbital motion is related to falling
motion, refer to Fig. 2.2. The curves A,B,C are the paths of objects leaving
the top of a tower with greater and greater horizontal velocities. They hit the
ground farther and farther from the bottom of the tower until C when the object
goes into orbit.
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2 Curved Spacetimes 2.1 Newton’s theory of gravity

Fig. 2.2: Falling and
orbital motion are the
same.

Mathematically, Newton’s theory says that a planet
in the Sun’s gravity or an apple in the Earth’s gravity is
attracted by the central body (do not ask how!), causing
an acceleration

a = −κM
r2

, (2.1)

where κ is the Newtonian gravitational constant, M is
the mass of the central body, and r is the distance to
the center of the central body.

Eq. (2.1) implies that the planets orbit the Sun in
ellipses, in accord with Kepler’s findings. See Appendix
8. By taking the distance r to the Earth’s center to be
essentially constant near the Earth’s surface, Eq. (2.1)
is also in accord with Galileo’s findings: a is constant in time and is independent
of the mass and composition of the falling object.

Today we understand that the rest of the universe is made of the same
“stuff” as here on Earth and obeys the same physical laws. Newton’s theory of
gravity was an early contribution to this great advance in our understanding of
our place in the universe.

Newton’s theory has enjoyed enormous success. Perhaps the most spectacu-
lar example occurred in 1846. Observations of the position of the planet Uranus
disagreed with the predictions of Newton’s theory of gravity, even after taking
into account the gravitational effects of the other known planets. The discrep-
ancy was about 4 arcminutes – 1/8th of the angular diameter of the moon. U.
Le Verrier, a French astronomer, calculated that a new planet, beyond Uranus,
could account for the discrepancy. He wrote J. Galle, an astronomer at the
Berlin observatory, telling him where the new planet should be – and Neptune
was discovered! It was within 1 arcdegree of Le Verrier’s prediction.

Even today, calculations of spacecraft trajectories are made using Newton’s
theory. The incredible accuracy of his theory will be examined further in Sec.
3.3.

Nevertheless, Einstein rejected Newton’s theory because it is based on pre-
relativity ideas about time and space which, as we have seen, are not correct.
In particular, the acceleration in Eq. (2.1) is instantaneous with respect to a
universal time.
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2 Curved Spacetimes 2.2 The Key to General Relativity

2.2 The Key to General Relativity

A curved surface is different from a flat surface. However, a simple observation
by the nineteenth century mathematician Karl Friedrich Gauss provides the key
to the construction of the theory of curved surfaces: a small region of a curved
surface is in many respects like a small region of a flat surface. This is familiar:
a small region of a (perfectly) spherical Earth appears flat. On an apple, a
smaller region must be chosen before it appears flat.

In the next three sections we shall formalize Gauss’ observation by taking
the three postulates for flat surfaces from Chapter 1, restricting them to small
regions, and then using them as postulates for curved surfaces.

We shall see that a curved spacetime is different from a flat spacetime.
However, a simple observation of Einstein provides the key to the construction
of general relativity: a small region of a curved spacetime is in many respects
like a small region of a flat spacetime. To understand this, we must extend the
concept of an inertial object to curved spacetimes.

Passengers in an airplane at rest on the ground or flying in a straight line
at constant speed feel gravity, which feels very much like an inertial force. Ac-
celerometers in the airplane respond to the gravity. On the other hand, astro-
nauts in orbit or falling radially toward the Earth feel no inertial forces, even
though they are not moving in a straight line at constant speed with respect to
the Earth. And an accelerometer carried by the astronauts will register zero.
We shall include gravity as an inertial force and, as in special relativity, call an
object inertial if it experiences no inertial forces. An inertial object in gravity
is in free fall. Forces other than gravity do not act on it.

We now rephrase Einstein’s key observation: as viewed by inertial observers,
a small region of a curved spacetime is in many respects like a small region of
a flat spacetime. We see this vividly in motion pictures of astronauts in orbit.
No gravity is apparent in their cabin: Objects suspended at rest remain at rest.
Inertial objects in the cabin move in a straight line at constant speed, just as
in a flat spacetime. Newton’s theory predicts this: according to Eq. (2.1) an
inertial object and the cabin accelerate the same with respect to the Earth and
so they do not accelerate with respect to each other.

In the next three sections we shall formalize Einstein’s observation by tak-
ing our three postulates for flat spacetimes, restricting them to small spacetime
regions, and then using them as our first three (of four) postulates for curved
spacetimes. The local inertial frame postulate asserts the existence of small in-
ertial cubical lattices with synchronized clocks to serve as coordinate systems
in small regions of a curved spacetime. The metric postulate asserts a univer-
sal light speed and a slowing of moving clocks in local inertial frames. The
geodesic postulate asserts that inertial particles and light move in a straight line
at constant speed in local inertial frames.

We close this section with a discussion of two kinds of experimental evidence
for the postulates: universal acceleration and the gravitational redshift.
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2 Curved Spacetimes 2.2 The Key to General Relativity

Universal Acceleration. Experiments of R. Dicke and of V. B. Bragin-
sky, performed in the 1960’s, verify to extraordinary accuracy one of Galileo’s
findings incorporated into Newton’s theory: the acceleration of a free falling
object in gravity is independent of its mass and composition. (See Sec. 2.1.)
We may reformulate this in the language of spacetimes: the worldline of an
inertial object in a curved spacetime is independent of its mass and composi-
tion. The geodesic postulate will incorporate this by not referring to the mass
or composition of the inertial objects whose worldlines it describes.

Fig. 2.3: Masses A and B accel-
erate the same toward the Sun.

Dicke and Braginsky used the Sun’s gravity.
The principle of their experiments can be seen
in the simplified diagram in Fig. 2.3. Weights
A and B, supported by a quartz fiber, are, with
the Earth, in free fall around the Sun. Dicke
and Braginsky used various substances for the
weights. Any difference in their acceleration
toward the Sun would cause a twisting of the
fiber. Due to the Earth’s rotation, the twisting
would be in the opposite direction twelve hours
later. The apparatus had a resonant period of
oscillation of 24 hours so that oscillations could
build up. In Braginsky’s experiment the differ-

ence in the acceleration of the weights toward the Sun was no more than one
part in 1012 of their mutual acceleration toward the Sun.

A related experiment shows that the Earth and the Moon, despite the dif-
ference in their masses, accelerate the same in the Sun’s gravity. If this were
not so, then there would be unexpected changes in the Earth-Moon distance.
Changes in this distance can be measured within 2 cm (!) by timing the return
of a laser pulse sent from Earth to mirrors on the Moon left by astronauts. This
is the lunar laser ranging experiment . See Figs. 2.4 and 2.5.

Fig. 2.4: Lunar laser ranging experi-
ment laser

Fig. 2.5: Lunar laser ranging experi-
ment mirrors on the Moon.
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2 Curved Spacetimes 2.2 The Key to General Relativity

The measurements show that the Earth and Moon accelerate the same to-
ward the Sun within one part in 104.

The experiment also shows that the Newtonian gravitational constant κ in
Eq. (2.1) does not change by more than 1 part in 1012 per year. The constant
also appears in Einstein’s field equation, Eq. (2.28).

There is another difference between the Earth and the Moon. Imagine dis-
assembling to Earth into small pieces and separating the pieces far apart. The
separation requires energy input to counteract the gravitational attraction of the
pieces. This energy is called the Earth’s gravitational binding energy. By Ein-
stein’s principle of the equivalence of mass and energy (E = mc2), this energy
is equivalent to mass. Thus the separated pieces have more total mass than the
Earth. The difference is small, only 5 parts in 1010. But it is 25 times smaller
for the Moon. One can wonder whether this difference between the Earth and
Moon causes a difference in their acceleration toward the Sun. The lunar laser
experiment shows that this does not happen. This is something that the Dicke
and Braginsky experiments cannot test.

Gravitational Redshift. The last experiment we shall consider as evi-
dence for the three postulates is the terrestrial redshift experiment . It was first
performed by R. V. Pound and G. A. Rebka in 1960 and then more accurately
by Pound and J. L. Snider in 1964. The experimenters put a source of gamma
radiation at the bottom of a tower. Radiation received at the top of the tower
was redshifted: z = 2.5×10−15, within an experimental error of about 1%. This
is a gravitational redshift .

According to the discussion following Eq. (1.6), an observer at the top of
the tower would see a clock at the bottom run slowly. Clocks at rest at different
heights in the Earth’s gravity run at different rates! Part of the result of the
Hafele-Keating experiment is due to this. See Exercise 2.1.

We showed in Sec. 1.3 that the assumption Eq. (1.4), necessary for synchro-
nizing clocks at rest in the coordinate lattice of an inertial frame, is equivalent
to a zero redshift between the clocks. This assumption fails for clocks at the
top and bottom of the tower. Thus clocks at rest in a small coordinate lattice
on the ground cannot be (exactly) synchronized.

We now show that the experiment provides evidence that clocks at rest in
a small inertial lattice can be synchronized. In the experiment, the tower has
(upward) acceleration g, the acceleration of Earth’s gravity, in a small inertial
lattice falling radially toward Earth. We will show shortly that the same redshift
would be observed with a tower having acceleration g in an inertial frame in
a flat spacetime. This is another example of small regions of flat and curved
spacetimes being alike. Thus it is reasonable to assume that there would be no
redshift with a tower at rest in a small inertial lattice in gravity, just as with a
tower at rest in an inertial frame. In this way, the experiment provides evidence
that the condition Eq. (1.4), necessary for clock synchronization, is valid for
clocks at rest in a small inertial lattice.
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2 Curved Spacetimes 2.2 The Key to General Relativity

We now calculate the Doppler redshift for a tower with acceleration g in an
inertial frame. Suppose the tower is momentarily at rest when gamma radiation
is emitted. The radiation travels a distance h, the height of the tower, in the
inertial frame. (We ignore the small distance the tower moves during the flight
of the radiation. We shall also ignore the time dilation of clocks in the moving
tower and the length contraction – see Appendix 6 – of the tower. These effects
are far too small to be detected by the experiment.) Thus the radiation takes
time t = h/c to reach the top of the tower. (For clarity we do not take c = 1.)
In this time the tower acquires a speed v = gt = gh/c in the inertial frame.
From Exercise 1.6, this speed causes a Doppler redshift

z =
v

c
=
gh

c2
. (2.2)

In the experiment, h = 2250 cm. Substituting numerical values in Eq.
(2.2) gives the value of z measured in the terrestrial redshift experiment; the
gravitational redshift for towers accelerating in inertial frames is the same as
the Doppler redshift for towers accelerating in small inertial lattices near Earth.
Exercise 3.6 shows that a rigorous calculation in general relativity also gives Eq.
(2.2).

Exercise 2.1. Let h be the height at which the airplane flies in the simplified
Hafele-Keating experiment of Exercise 1.11. Show that the difference between
the clocks due to the gravitational redshift is

∆sa −∆sr = gh∆t.

Suppose h = 10 km. Substitute values to obtain ∆sa −∆sr = 1.6× 10−7 sec.

Adding this to the time dilation difference of Exercise 1.11 gives

∆sa −∆sr =

(
1

2
(v2
a − v2

r) + gh

)
∆t = 3.0× 10−7 sec.

Exercise 3.5 shows that a rigorous calculation in general relativity gives the
same result.

In 2010 the gravitational redshift was verified to better than 1 part in 108

using quantum clocks. In the experiment h was about .1mm!

The satellites of the Global Positioning System (GPS) carry atomic clocks.
A GPS receiver on Earth can determine its position within a few meters. Time
dilation and gravitational redshifts must be taken into account for the system
to function properly. If they were ignored, navigational errors of 10 km/day
would accumulate.
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2.3 The Local Inertial Frame Postulate

Fig. 2.6: A local
planar frame.

Local Planar Frames. Suppose that curved surface
dwellers start to construct a square coordinate grid using
identical rigid rods constrained (of course) to their surface.
If the rods are short enough, then at first they will fit to-
gether well. But owing to the curvature of the surface, as
the grid gets larger the rods must be forced a bit to con-
nect them. This will cause stresses in the lattice and it will
not be quite square. Surface dwellers call a small (nearly)
square coordinate grid a local planar frame at P , where P is
the point at the origin of the grid. See Fig. 2.6. In smaller
regions around P , the grid must become more square.

The Local Planar Frame Postulate for a Curved Surface

A local planar frame can be constructed at any point P and with
any orientation.

Fig. 2.7: Spherical coordinates
(φ, θ) on a sphere.

Global Surface Coordinates. We
shall see that local planar frames at P pro-
vide surface dwellers with an intuitive de-
scription of many properties of a curved sur-
face at P . However, in order to study the
surface as a whole, they need global coordi-
nates, defined over the entire surface. There
are, in general, no natural global coordinate
systems to single out in a curved surface as
planar frames are singled out in a flat sur-
face. Thus they attach global coordinates
(y1, y2) in an arbitrary manner. The only
restrictions are that different points must
have different coordinates and nearby points
must receive nearby coordinates. In general, the coordinates will not have a ge-
ometric meaning; they merely serve to label the points of the surface.

One common way for us (but not surface dwellers) to attach global coordi-
nates to a curved surface is to parameterize it in three dimensional space:

x = x(y1, y2), y = y(y1, y2), z = z(y1, y2) . (2.3)

As (y1, y2) varies, (x, y, z) varies on the surface. Assign coordinates (y1, y2) to
the point (x, y, z) on the surface given by Eq. (2.3). For example, Fig. 2.7
shows spherical coordinates (y1, y2) = (φ, θ) on a sphere of radius R. We have

x = R sinφ cos θ, y = R sinφ sin θ, z = R cosφ. (2.4)

23



2 Curved Spacetimes 2.3 The Local Inertial Frame Postulate

Exercise 2.2. Show that surface dwellers living on a sphere can assign
(φ, θ) coordinates to their surface.

The Global Coordinate Postulate for a Curved Surface

The points of a curved surface can be labeled with coordinates
(y1, y2).

(Technically, the postulate should state that a curved surface is a two dimen-
sional manifold . The statement given will suffice for us.)

Fig. 2.8: Tidal ac-
celerations in a radi-
ally free falling cabin.

Local Inertial Frames. In the last section we saw
that inertial objects in an astronaut’s cabin behave as if
no gravity were present. Actually, they will not behave
exactly as if no gravity were present. To see this, assume
for simplicity that their cabin is falling radially toward
Earth. Inertial objects in the cabin do not accelerate
exactly the same with respect to the Earth because they
are at slightly different distances and directions from the
Earth’s center. See Fig. 2.8. Thus, an object initially at
rest near the top of the cabin will slowly separate from
one initially at rest near the bottom. In addition, two
objects initially at rest at the same height will slowly move
toward each other as they both fall toward the center
of the Earth. These changes in velocity are called tidal

accelerations. (Why?) They are caused by small differences in the Earth’s
gravity at different places in the cabin. They become smaller in smaller regions
of space and time, i.e., in smaller regions of spacetime.

Fig. 2.9: The GOCE gra-
diometer.

The European Space Agency’s GOCE satellite,
planned for launch in 2009, is dedicated to measur-
ing the Earth’s gravity field in unprecedented detail.
It will carry a gravity gradiometer to measure tidal
accelerations. The gradiometer is essentially a so-
phisticated version of Figure 2.8. See Figure 2.9.
As the satellite orbits, the tidal accelerations will
vary due to mountains, changes in the density inside
the Earth, etc. Among other benefits, the measure-
ments will improve our understanding of the Earth’s
internal structure and provide a much better refer-
ence for ocean and climate studies, including sea-
level changes and ice-sheet dynamics.
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2 Curved Spacetimes 2.3 The Local Inertial Frame Postulate

Suppose that astronauts in a curved spacetime attempt to construct an
inertial cubical lattice using rigid rods. If the rods are short enough, then at
first they will fit together well. But as the grid gets larger, the lattice will have
to resist tidal accelerations, and the rods cannot all be inertial. This will cause
stresses in the lattice and it will not be quite cubical.

In the last section we saw that the terrestrial redshift experiment provides
evidence that clocks in a small inertial lattice can be synchronized. Actually, due
to small differences in the gravity at different places in the lattice, an attempt
to synchronize the clocks with the one at the origin with the procedure of Sec.
1.3 will not quite work. However, we can hope that the procedure will work
with as small an error as desired by restricting the lattice to a small enough
region of a spacetime.

A small (nearly) cubical inertial lattice with (nearly) synchronized clocks
is called a local inertial frame at E, where E is the event at the origin of the
lattice when the clock there reads zero. In smaller regions around E, the lattice
is more cubical and the clocks are more nearly synchronized.

The Local Inertial Frame Postulate for a Curved Spacetime

Let E be an event on the worldline of an inertial object. A local
inertial frame can be constructed at E with the inertial object at
rest in it at E and with any given spatial orientation.

Global Spacetime Coordinates. We shall find that local inertial frames
at E provide an intuitive description of many properties of a curved spacetime
at E. However, in order to study a curved spacetime as a whole, we need global
coordinates, defined over the entire spacetime. There are, in general, no natural
global coordinates to single out in a curved spacetime, as inertial frames were
singled out in a flat spacetime. Thus we attach global coordinates in an arbitrary
manner. The only restrictions are that different events must receive different
coordinates and nearby events must receive nearby coordinates. In general, the
coordinates will not have a physical meaning; they merely serve to label the
events of the spacetime.

Often one of the coordinates is a “time” coordinate and the other three are
“space” coordinates, but this is not necessary. For example, a coordinate system
is obtained by sending out a flash of light in all directions from an event. The
flash is received at four airplanes flying on arbitrary paths. Each airplane has
a clock. The clocks need neither to be synchronized nor to run uniformly. The
arrival times of the flash are the coordinates of the event.

The Global Coordinate Postulate for a Curved Spacetime

The events of a curved spacetime can be labeled with coordinates
(y0, y1, y2, y3).
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2 Curved Spacetimes 2.3 The Local Inertial Frame Postulate

In the next two sections we give the metric and geodesic postulates of gen-
eral relativity. We first express the postulates in local inertial frames. This
local form of the postulates gives them the same physical meaning as in special
relativity. We then translate the postulates to global coordinates. This global
form of the postulates is unintuitive and complicated but is necessary to carry
out calculations in the theory.

We can use arbitrary global coordinates in flat as well as curved spacetimes.
We can then put the metric and geodesic postulates of special relativity in the
same global form that we shall obtain for these postulates for curved space-
times. We do not usually use arbitrary coordinates in flat spacetimes because
inertial frames are so much easier to use. We do not have this luxury in curved
spacetimes.

It is remarkable that we shall be able to describe curved spacetimes intrinsi-
cally, i.e., without describing them as curved in a higher dimensional flat space.
Gauss created the mathematics necessary to describe curved surfaces intrinsi-
cally in 1827. G. B. Riemann generalized Gauss’ mathematics to curved spaces
of higher dimension in 1854. His work was extended by several mathematicians.
Thus the mathematics necessary to describe curved spacetimes intrinsically was
waiting for Einstein when he needed it.
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2 Curved Spacetimes 2.4 The Metric Postulate

2.4 The Metric Postulate

Curved Surface Metric. Recall the local form of the metric for flat surfaces,
Eq. (1.13): ds2 = (dx1)2 + (dx2)2.

The Metric Postulate for a Curved Surface, Local Form

Let point Q have coordinates (dx1, dx2) in a local planar frame at
P . Let ds be the distance between the points. Then

ds2 = (dx1)2 + (dx2)2. (2.5)

See Fig. 2.6.
Even though the local planar frame extends a finite distance from P , Eq.

(2.5) holds only for infinitesimal distances from P .
We now express Eq. (2.5) in terms of global coordinates. Set the matrix

f◦ = (f◦mn) =

(
1 0
0 1

)
.

Then Eq. (2.5) can be written

ds2 =

2∑
m,n=1

f◦mndx
mdxn. (2.6)

Henceforth we use the Einstein summation convention by which an index which
appears twice in a term is summed without using a Σ. Thus Eq. (2.6) becomes

ds2 = f◦mndx
mdxn. (2.7)

As another example of the summation convention, consider a function h(y1, y2).

Then we may write the differential dh =
∑2
i=1(∂h/∂yi) dyi as (∂h/∂yi) dyi.

Let P and Q be neighboring points on a curved surface with coordinates
(y1, y2) and (y1 + dy1, y2 + dy2) in a global coordinate system. Let Q have
coordinates (dx1, dx2) in a local planar frame at P . Think of the (xi) coordinates
as functions of the (yj) coordinates, just as cartesian coordinates in the plane
are functions of polar coordinates: x = r cos θ, y = r sin θ. This gives meaning
to the partial derivatives ∂xi/∂yj .

From Eq. (2.7), the distance from P to Q is

ds2 = f◦mn dx
mdxn

= f◦mn

(
∂xm

∂yj
dyj
)(

∂xn

∂yk
dyk
)

(sum on m, n, j, k)

=

(
f◦mn

∂xm

∂yj
∂xn

∂yk

)
dyjdyk

= gjk(y) dyjdyk, (2.8)
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where we have set

gjk(y) = f◦mn
∂xm

∂yj
∂xn

∂yk
. (2.9)

Since the matrix (f◦mn) is symmetric, so is (gjk). Use a local planar frame at
each point of the surface in this manner to translate the local form of the metric
postulate, Eq. (2.5), to global coordinates:

The Metric Postulate for a Curved Surface, Global Form
Let (yi) be global coordinates on the surface. Then there is a sym-
metric matrix g(yi) = (gjk(yi)) such that the distance ds from (yi)
to a neighboring point (yi + dyi) is given by

ds2 = gjk(yi) dyjdyk. (2.10)

The matrix g is called the metric of the surface (with respect to (yi)).

Exercise 2.3. Show that the metric for the (φ, θ) coordinates on the sphere
in Eq. (2.4) is ds2 = R2dφ2 +R2 sin2φdθ2, i.e.,

g(φ, θ) =

(
R2 0
0 R2 sin2φ

)
. (2.11)

Do this in two ways:
a. By converting from the metric of a local planar frame. Show that for

a local planar frame whose x1-axis coincides with a circle of latitude, dx1 =
R sinφdθ and dx2 = Rdφ. See Fig. 2.12.

b. Use Eq. (2.4) to express ds2 = dx2 + dy2 + dz2 in (φ, θ) coordinates.

Exercise 2.4. Consider the hemisphere z = (R2 − x2 − y2)
1
2 . Assign

coordinates (x, y) to the point (x, y, z) on the hemisphere. Find the metric in this
coordinate system. Express your answer as a matrix. Hint: Use z2 = R2−x2−y2

to compute dz2 .

We learn in linear algebra that we should not think of a vector as a list of
components (vi), but as a single object v which represents a magnitude and
direction (an arrow), independently of any coordinate system. If a coordinate
system is introduced, then the vector acquires components. They will be differ-
ent in different coordinate systems.

Similarly, we should not think of a metric as a list of components (gjk), but
as a single object g which represents infinitesimal distances, independently of
any coordinate system. If a coordinate system is introduced the metric acquires
components. They will be different in different coordinate systems.

Exercise 2.5. a. Let (yi) and (ȳi) be two coordinate systems on the same
surface, with metrics (gjk(yi)) and (ḡpq(ȳ

i)). Show that

ḡpq = gjk
∂yj

∂ȳp
∂yk

∂ȳq
. (2.12)

Hint: See Eq. (2.8).
b. Show by direct calculation that the metrics of Exercises 2.3 and 2.4 are

related by Eq. (2.12).
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Curved Spacetime Metric. Recall the local form of the metric for flat
spacetimes, Eq. (1.14): ds2 = (dx0)2 − (dx1)2 − (dx2)2 − (dx3)2.

The Metric Postulate for a Curved Spacetime, Local Form

If a pulse of light can move between neighboring events, set ds = 0.
If a clock can move between the events, let ds be the time it measures
between them. Let F have coordinates (dxi) in a local inertial frame
at E. Then

ds2 = (dx0)2 − (dx1)2 − (dx2)2 − (dx3)2. (2.13)

The metric postulate asserts a universal light speed and a slowing of moving
clocks in local inertial frames. (See the discussion following Eq. (1.10).)

We now translate the metric postulate to global coordinates. Eq. (2.13) can
be written

ds2 = f◦mndx
mdxn, (2.14)

where

f◦ = (f◦mn) =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 .

Using Eq. (2.14), the calculation Eq. (2.8), which produced the global form
of the metric postulate for curved surfaces, now produces the global form of the
metric postulate for curved spacetimes.

The Metric Postulate for a Curved Spacetime, Global Form

Let (yi) be global coordinates on the spacetime. Then there is a
symmetric matrix g(yi) = (gjk(yi)) such that the interval ds between
(yi) and a neighboring event (yi + dyi) is given by

ds2 = gjk(yi) dyjdyk. (2.15)

The matrix g is called the metric of the spacetime (with respect to (yi)).
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2.5 The Geodesic Postulate

Fig. 2.10: The
equator is the only
circle of latitude
which is a geodesic.

Curved Surface Geodesics. Curved surface dwellers
find that some curves in their surface are straight in local
planar frames. They call these curves geodesics. Fig. 2.10
indicates that the equator is a geodesic but the other circles
of latitude are not. A geodesic is as straight as possible,
given that it is constrained to the surface. To traverse a
geodesic, a surface dweller need only always walk “straight
ahead” over hill and dale.

Recall the geodesic equations for flat surfaces, Eq.
(1.15): ẍi = 0, i = 1, 2.

The Geodesic Postulate
for a Curved Surface, Local Form

Parameterize a geodesic with arclength s. Let
point P be on the geodesic. Then in every local
planar frame at P

ẍi(P ) = 0, i = 1, 2. (2.16)

We now translate Eq. (2.16) into global coordinates y to obtain the global
form of the geodesic equations. We first need to know that the metric g = (gij)
has a matrix inverse g−1, which we denote (gjk).

Exercise 2.6. a. Let the matrix a = (∂xn/∂yk). Show that the inverse
matrix a−1 = (∂yk/∂xj).

b. Show that Eq. (2.9) can be written g = atf◦a, where t means “trans-
pose”.

c. Show that g−1 = a−1(f◦)−1(a−1)t.

Introduce the notation ∂kgim = ∂gim/∂y
k. Define the Christoffel symbols:

Γijk = 1
2 g

im [∂kgjm + ∂jgmk − ∂mgjk] . (2.17)

Note that Γijk = Γikj . The Γijk , like the gjk , vary from point to point on a
surface.

Exercise 2.7. Show that for the metric g of Eq. (2.11), Γφθθ = − sinφ cosφ.
The only other nonzero Christoffel symbols are Γθθφ = Γθφθ = cotφ.
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2 Curved Spacetimes 2.5 The Geodesic Postulate

You should not try to assign a geometric meaning to the Christoffel symbols;
simply think of them as what appears when the geodesic equations are translated
from their local form Eq. (2.16) (which have an evident geometric meaning) to
their global form (which do not):

The Geodesic Postulate for a Curved Surface, Global Form

Parameterize a geodesic with arclength s. Then in every global
coordinate system

ÿi + Γijkẏ
j ẏk = 0, i = 1, 2. (2.18)

Appendix 10 translates the local form of the geodesic postulate to the global
form. The translation requires an assumption. A local planar frame at P ex-
tends to a finite region around P . Let f = (fmn(x)) represent the metric in this
coordinate system. According to Eq. (2.7), (fmn(P )) = f◦. It is a mathematical
fact that there are coordinates satisfying this relationship and also

∂ifmn(P ) = 0 (2.19)

for all m,n, i. They are called geodesic coordinates. See Appendix 9. A function
with a zero derivative at a point is not changing much at the point. In this sense
Eq. (2.19) states that f stays close to f◦ near P . Since a local planar frame at
P is constructed to approximate a planar frame as closely as possible near P ,
surface dwellers require that a local planar frame at P is a geodesic coordinate
system at P .

Exercise 2.8. Show that the metric of Exercise 2.4 satisfies Eq. (2.19) at
(x, y) = (0, 0) .

Exercise 2.9. Show that Eq. (2.18) reduces to Eq. (2.16) for local planar
frames.

Exercise 2.10. Show that the equator is the only circle of latitude which is
a geodesic. Of course, all great circles on a sphere are geodesics. Use the result
of Exercise 2.7. Before using the geodesic equations parameterize the circles
with s.
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Curved Spacetime Geodesics. Recall the geodesic equations for a flat
spacetime, Eq. (1.18): ẍi = 0, i = 0, 1, 2, 3.

The Geodesic Postulate for a Curved Spacetime, Local
Form

Worldlines of inertial particles and pulses of light can be parame-
terized so that if E is on the worldline, then in every local inertial
frame at E

ẍi(E) = 0, i = 0, 1, 2, 3. (2.20)

For inertial particles we may take the parameter to be s .

The worldlines are called geodesics.

Fig. 2.11: The path of an inertial particle
in a lattice stuck to the Earth and in a free
falling inertial lattice. The dots are spaced at
equal time intervals.

The geodesic postulate asserts
that inertial particles and light
move in a straight line at constant
speed in a local inertial frame. (See
the remarks after Eq. (1.18).) The
worldline of an inertial particle or a
light pulse in a curved spacetime is
as straight as possible (in space and
time – see the remarks following Eq.
(1.17)), given that it is constrained
to the spacetime. The geodesic is straight in local inertial frames, but looks
curved when viewed in an “inappropriate” coordinate system. See Fig. 2.11.

The postulate does not mention the mass or chemical composition of an iner-
tial particle, so its worldline is independent of these attributes. Many sensitive
experiments have confirmed this.

Einstein’s “straightest worldline in a curved spacetime” description of the
path is very different from Newton’s “curved path in a flat space” description.

An analogy makes the difference more vivid. Imagine two surface dwellers
living on a sphere. They start some distance apart on their equator and walk
due north at the same speed along a circle of longitude (a geodesic). As they
walk, they come closer together. They might attribute this to an attractive
force between them. But we see that it is due to the curvature of their surface.

The local form of the geodesic postulate for curved spacetimes translates to

The Geodesic Postulate for a Curved Spacetime,
Global Form

Worldlines of inertial particles and pulses of light can be parameter-
ized so that in every global coordinate system

ÿi + Γijk ẏ
j ẏk = 0, i = 0, 1, 2, 3. (2.21)

For inertial particles we may take the parameter to be s .
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2.6 The Field Equation

Fig. 2.12: On a
sphere K = 1/R2.

Previous sections of this chapter explored similarities
between small regions of flat and curved surfaces and be-
tween small regions of flat and curved spacetimes. This
section explores differences.

Surface Curvature. The local forms of our curved
surface postulates are examples of Gauss’ key observation
from Sec. 2.2: a small region of a curved surface is in
many respects like a small region of a flat surface. Surface
dwellers might suppose that all differences between such
regions vanish as the regions become smaller. They would
be wrong. To see this, pass geodesics through a point P
in every direction.

Connect all the points at distance r from P along the geodesics, forming a
“circle” C of radius r. Let C(r) be the circumference of the circle. Define the
curvature K of the surface at P :

K =
3

π
lim
r→ 0

2π r − C(r)

r3
. (2.22)

Clearly, K = 0 for a flat surface. From Fig. 2.12, C(r) < 2πr for a sphere
and so K ≥ 0. From Fig. 2.12, we find

C(r) = 2πR sinφ = 2πR sin(r/R) = 2πR
[
r/R− (r/R)3/6 + . . .

]
.

Fig. 2.13: On a pseudo-
sphere K = −1/R2.

A quick calculation shows that K = 1/R2. The cur-
vature is a difference between regions of a sphere and
a flat surface which does not vanish as the regions be-
come smaller.

The surface of revolution of Fig. 2.13 is a pseu-
dosphere. The horizontal “circles of latitude” are
concave inward and the vertical “lines of longitude”
are concave outward. Because of this “wiggling”,
C(r) > 2πr and so K ≤ 0. Exercise 2.14 shows that
K = −1/R2, where R is a constant.

Despite the examples, in general K varies from
point to point in a curved surface.
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Distances and geodesics are involved in the definition of K. But distances
determine geodesics: distances determine the metric, which determines the
Christoffel symbols Eq. (2.17), which determine the geodesics Eq. (2.18). Thus
we learn an important fact: distances determine K. Thus K is measurable by
surface dwellers.

Exercise 2.11. Show that a map of a region of the Earth must distort
distances. Take the Earth to be perfectly spherical. Make no calculations.

Roll a flat piece of paper into a cylinder. Since this does not distort distances
on the paper, it does not change K. Thus K = 0 for the cylinder. Viewed from
the outside, the cylinder is curved, and so K = 0 seems “wrong”. However,
surface dwellers restricted to a small region cannot determine that they now live
on a cylinder. Thus K “should” be zero for a cylinder. (They can determine
that they live on a cylinder by circumnavigating it.)

A formula expressing K in terms of distances was given by Gauss. In the
special case g12 = 0 (setting ∂i ≡ ∂/∂yi)

K = − (g11g22)
− 1

2

{
∂1

(
g
− 1

2
11 ∂1g

1
2
22

)
+ ∂2

(
g
− 1

2
22 ∂2g

1
2
11

)}
. (2.23)

Exercise 2.12. Show that Eq. (2.23) gives K = 1/R2 for a sphere of radius
R. Use the metric of a sphere, Eq. (2.11).

Exercise 2.13. Generate a surface of revolution by rotating the param-
eterized curve y = f(u), z = h(u) about the z-axis. Let (r, θ, z) be cylin-
drical coordinates and parameterize the surface with coordinates (u, θ). Use
ds2 = dr2 + r2dθ2 + dz2 to show that the metric is(

f ′2 + h′2 0
0 f2

)
.

Exercise 2.14. If y = Re−u and z = R
∫ u

0
(1 − e−2t)

1
2 dt, then the surface

of revolution in Exercise 2.13 is the pseudosphere of Fig. 2.13. Show that
K = −1/R2 for the pseudosphere.

Exercise 2.15. If y = 1 and z = u, then the surface of revolution in
Exercise 2.13 is a cylinder. Show that K = 0 for a cylinder using Eq. (2.23).
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Spacetime Curvature. The local forms of our curved spacetime postulates
are examples of Einstein’s key observation from Sec. 2.2: a small region of a
curved spacetime is in many respects like a small region of a flat spacetime. We
might suppose that all differences between such regions vanish as the regions
become smaller. We would be wrong.

To see this, refer to Fig. 2.8. Let ∆ r be the small distance between objects
at the top and bottom of the cabin and let ∆ a be the small tidal acceleration
between them. In the curved spacetime of the cabin ∆ a 6= 0 , which is different
from the flat spacetime value ∆ a = 0. But in the cabin ∆ a → 0 as ∆ r → 0 ;
this difference between a curved and flat spacetime does vanish as the regions
become smaller. But also in the cabin ∆ a/∆ r 6= 0 , again different from the flat
spacetime ∆ a/∆ r = 0 . This difference does not vanish as the regions become
smaller: using Eq. (2.1), ∆ a/∆ r → da/dr = 2κM/r3 6= 0. General relativity
interprets this difference as a manifestation of the curvature of spacetime.

The Field Equation. The metric and geodesic postulates describe the
behavior of clocks, light, and inertial particles in a curved spacetime. To apply
these postulates, we must know the metric of the spacetime. Our final postulate
for general relativity, the field equation, determines the metric. Loosely speak-
ing, the equation determines the “shape” of a spacetime, how it is “curved”.

We constructed the metric in Sec. 2.4 using local inertial frames. There
is obviously a relationship between the motion of local inertial frames and the
distribution of mass in a curved spacetime. Thus, there is a relationship between
the metric of a spacetime and the distribution of mass in the spacetime. The
field equation gives this relationship. Schematically it reads[

quantity determined
by metric

]
=

[
quantity determined

by mass/energy

]
. (2.24)

To specify the two sides of this equation, we need several definitions. Define
the Ricci tensor

Rjk = Γptk Γtjp − Γptp Γtjk + ∂kΓpjp − ∂pΓ
p
jk . (2.25)

Don’t panic over this complicated definition: You need not have a physical
understanding of the Ricci tensor to proceed. And while the Rjk are extremely
tedious to calculate by hand, computers can readily calculate them for us.

As with the metric g , we will use R to designate the Ricci tensor as a single
object, existing independently of any coordinate system, but which in a given
coordinate system acquires components Rjk .

Define the curvature scalar R = gjkRjk .
We can now specify the left side of the schematic field equation Eq. (2.24).

The quantity determined by the metric is the Einstein tensor

G = R− 1
2R g. (2.26)

The right side of the field equation is given by the energy-momentum tensor
T. It represents the source of the gravitational field in general relativity. All
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forms of matter and energy, including electromagnetic fields, and also pressures,
stresses, and viscosity contribute to T. But for our purposes we need to consider
only inertial matter; there are no pressures, stresses, or viscosity. Then the
matter is called dust . Dust interacts only gravitationally. Gas in interstellar
space which is thin enough so that particle collisions are infrequent is dust.

We now define T for dust. Choose an event E with coordinates (yi). Let
ρ be the density of the dust at E as measured by an observer moving with the
dust. (Thus ρ is independent of any coordinate system.) Let ds be the time
measured by the observer between E and a neighboring event on the dust’s
worldline with coordinates (yi + dyi). Define

T jk = ρ
dyj

ds

dyk

ds
. (2.27)

We can now state our final postulate for general relativity:

The Field Equation

G = −8πκT. (2.28)

Here κ is the Newtonian gravitational constant of Eq. (2.1).
The field equation is the centerpiece of Einstein’s theory. It relates the

curvature of spacetime at an event, represented by G, to the density and motion
of matter and energy at the event, represented by T. In our applications, we
will specify T, and then solve the equation for G.

Tracing back through the definitions of G, R, and Γijk (Eqs. (2.26), (2.25),
(2.17)) shows that G, like the curvature K of a surface, involves the metric com-
ponents gjk and their first and second partial derivatives. Thus the field equation
is a system of second order partial differential equations in the unknown gjk.

Appendix 13 gives a plausibility argument, based on reasonable assumptions,
which leads from the schematic field equation Eq. (2.24) to the field equation
Eq. (2.28). It is by no means a proof of the equation, but it should be convincing
enough to make us anxious to confront the theory with experiment in the next
chapter.
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2 Curved Spacetimes 2.6 The Field Equation

Covariant and contravariant. Before we can use the field equation we
must deal with a technical matter. The indices on the metric and the Ricci
tensor are subscripts: gjk and Rjk . The indices on the energy-momentum
tensor are superscripts: T jk. By convention, the placement of indices indicates
how components transform under a change of coordinates.1

Subscripted components ajk transform covariantly from coordinates (yi) to
coordinates (ȳp):

āpq = ajk
∂yj

∂ȳp
∂yk

∂ȳq
. (2.29)

Exercise 2.16. Show that if ajk and bjk transform covariantly, then so
does ajk + bjk.

We have seen the covariant transformation law Eq. (2.29) before, in Exercise
2.5, which shows that the gjk transform covariantly. The Rjk also transform
covariantly. (Do not attempt to verify this at home!) The Ricci scalar is the
same in all coordinate systems. Thus Gjk = Rjk− 1

2Rgjk transforms covariantly.
Superscripted components ajk transform contravariantly :

āpq = ajk
∂ȳp

∂yj
∂ȳq

∂yk
. (2.30)

Exercise 2.17. Show that the T jk transform contravariantly.

Exercise 2.18. Show that if ajk has one covariant and one contravariant

index, then ajj is a scalar, i.e., it has the same value in all coordinate systems.

Since the Gjk and T jk transform differently, we cannot take Gjk = −8πκT jk

as the components of the field equation, Eq. (2.28): even if this equation were
true in one coordinate system, it need not be in another. The solution is to raise
the covariant indices to contravariant indices: Gmn = gmjgnkGjk. Exercise A.6
shows that a raised covariant index is indeed a contravariant index.

Then we can take the components of the field equation to beGjk = −8πκT jk.
If this equation is valid in any one coordinate system, then, since the two sides
transform the same between coordinate systems, it is true in all. Alternatively,
we can lower the contravariant indices to covariant indices: Tmn = gmjgnkT

jk,
and use the equivalent field equation Gjk = −8πκTjk .

1This is a convention of tensor algebra. Tensor algebra and calculus are powerful tools for
computations in general relativity. But we do not need them for a conceptual understanding
of the theory. Appendix 11 gives a short introduction to tensors.
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2 Curved Spacetimes 2.6 The Field Equation

Vacuum Field Equation. If ρ = 0 at some event, then the field equation
is Rjk − 1

2Rgjk = 0. Multiply this by gjk:

0 = gjk
(
Rjk − 1

2Rgjk
)

= gjkRjk − 1
2Rg

jkgjk = R− 1
2R 4 = −R .

Fig. 2.14: Einstein’s vacuum
field equation.

Substitute R = 0 into the field equation to
obtain

The Vacuum Field Equation

R = 0 . (2.31)

At events in a spacetime where there is no matter
we may use this vacuum field equation.

The metric, the geodesic equations, and the
field equation are examples of our ability to de-
scribe a curved spacetime intrinsically in arbi-
trary coordinates. You should be impressed with
the power of this mathematics!

Curvature. The field equation yields a simple and elegant relationship
between the density of matter at an event and the curvature of spacetime at the
event. To obtain it we use Fermi normal coordinates, discussed in Appendix
12.

The metric f of a local inertial frame at E satisfies Eq. (2.14), (fmn(E)) = f◦.
The metric of a geodesic coordinate system satisfies in addition Eq. (2.19),
∂ifmn(E) = 0. And in a spacetime, the metric of a Fermi normal coordinate
system satisfies further ∂0 ∂ifmn(E) = 0.

Consider the element of matter at an event E. According to the local inertial
frame postulate, the element is at rest in some local inertial frame at E, which
we take to have Fermi normal coordinates. Let K12 be the curvature of the
surface formed by holding the time coordinate x0 and the spatial coordinate x3

fixed, while varying the other two spatial coordinates, x1 and x2. Appendix 12
shows that G00 = −(K12 +K23 +K31). Thus from the field equation

K12 +K23 +K31 = 8πκρ.

In particular, if ρ = 0 at an event, then K12 +K23 +K31 = 0 at the event.
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Chapter 3

Spherically Symmetric
Spacetimes

3.1 Stellar Evolution

Fig. 3.1: New stars shining
within the cloud of gas and dust
from which they formed.

Several applications of general relativity in
this chapter involve observations of stars at
various stages of their life. We thus begin with
a brief sketch of stellar evolution.

Interstellar gas and dust are major compo-
nents of galaxies. Suppose a perturbing force
causes a cloud of gas and dust to begin to con-
tract by self gravitation. As the cloud con-
tracts it will become hotter until thermonu-
clear reactions begin. The heat from these re-
actions will increase the pressure in the cloud
and stop the contraction. A star is born! See
Fig. 3.1. Our star, the Sun, formed in this
way 4.6 billion years ago.

A star will shine for millions or billions of years until its nuclear fuel runs out
and it begins to cool. Then the contraction will begin again. The subsequent
evolution of the star depends on its mass.
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3 Spherically Symmetric Spacetimes 3.1 Stellar Evolution

For a star of . 1.4 solar masses, the contraction will be stopped by a phe-
nomenon known as degenerate electron pressure – but not until enormous densi-
ties are reached. For example, the radius of the Sun will decrease by a factor of
102 – to about 1000 km – and its density will thus increase by a factor of 106, to
about 106g/cm3! Such a star is a white dwarf . They are common. For example,
Sirius, the brightest star in the sky, is a member of a double star system. Its
dim companion, Sirius B, is a white dwarf. See Fig. 3.2. The Sun will become
a white dwarf in about 5 billion years.

Fig. 3.2: Sirius and its white dwarf
companion. The spikes on Sirius are
an artifact.

Fig. 3.3: The crab nebula.

For a star over 1.4 solar masses, degenerate electron pressure cannot stop the
contraction. Then a tremendous nuclear explosion, called a Type II supernova,
occurs. The outer portions of the star are blown into interstellar space. A
nearby supernova occurred in 1054. It was visible during the day for 23 days,
outshining all other stars in the sky for several weeks. Today we see the material
blown from the star as the Crab Nebula. See Fig. 3.3.

One possible result of a Type II supernova is a neutron star : fantastic pres-
sures force most of the electrons to combine with protons to form neutrons.
Degenerate neutron pressure prevents the star from collapsing further. A typi-
cal neutron star has a radius of 10 km and a density of 1014g/cm3!

Neutron stars manifest themselves in two ways. They often spin rapidly –
up to nearly 1000 times a second. For poorly understood reasons, there can
be a small region of the star that emits radio and optical frequency radiation
in a narrow cone. If the Earth should happen to be in the direction of the
cone periodically as the star rotates, then the star will appear to pulse at the
frequency of rotation of the star, rather like a lighthouse. The neutron star is
then a pulsar . The first pulsar was discovered in 1968. Many hundreds are now
known. There is a pulsar at the center of the crab nebula.

There are also neutron stars which emit X-rays. They are always members
of a binary star system. We briefly discuss these systems in Sec. 3.6.

Degenerate neutron pressure cannot stop the contraction of a too massive
star; the star will collapse to a black hole. Sec. 3.6 is devoted to black holes.
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3 Spherically Symmetric Spacetimes 3.1 Stellar Evolution

Fig. 3.4: Artist’s depiction of
a white dwarf accreting matter
from a companion.

White dwarfs in binary star system are in-
volved in Type Ia supernovae. At its brightest,
a Type Ia supernova has a luminosity over a
billion times that of the Sun. There are two
ways a Type Ia supernova can occur. In the
first, the white dwarf accretes matter from its
companion. See Fig. 3.4. If it accretes suffi-
cient matter, then it will erupt in a supernova,
destroying the star. In the second, two orbit-
ing white dwarfs spiral toward each other until
they collide, producing the supernova.

We close our catalog of remarkable astro-
nomical objects with quasars, discovered in
1963. Quasars sit at the center of some dis-
tant galaxies. Their outstanding feature is their
enormous energy output, typically 100 times that of our entire Milky Way galaxy
from a region 1017 times smaller!
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3 Spherically Symmetric Spacetimes 3.2 Schwarzschild Metric

3.2 Schwarzschild Metric

In this section we investigate the metric of a spacetime around an object which
is spherically symmetric and unchanging in time, for example, the Sun. This
will enable us in the next section to compare general relativity’s predictions for
the motion of planets and light in our solar system with observations.

Exercise 3.1. Show that in spherical coordinates the flat spacetime metric
Eq. (1.14) becomes

ds2 = dt2 − dr2 − r2dΩ 2, (3.1)

where from Eq. (2.11), dΩ 2 = dφ2 + sin2φ dθ2 is the metric of the unit sphere.
Hint: Don’t calculate; think geometrically.

How can Eq. (3.1) change in a curved spherically symmetric spacetime? In
such a spacetime:

• The θ and φ coordinates retain their usual meaning.

• dθ and −dθ produce the same ds, as do dφ and −dφ. Thus none of the
terms drdθ, drdφ, dθdφ, dtdθ, or dtdφ can appear in the metric.

• The surface t = to, r = ro has the metric of a sphere, although not
necessarily of radius ro.

Thus the metric is of the form

ds2 = e2µdt2 − 2udtdr − e2νdr2 − r2e2λdΩ 2, (3.2)

where µ, ν, u, and λ are unknown functions of r. They are not functions of θ or
φ (by spherical symmetry) or of t (since the metric is unchanging in time). We
write some of the coefficients as exponentials for convenience.

Exercise 3.2. Show that the coordinate change r̄ = reλ(r) eliminates the
e2λ factor. (Then name the radial coordinate r again.)

Exercise 3.3. Show that the coordinate change t̄ = t+Φ(r), where Φ′(r) =
−ue−2µ, eliminates the dtdr term. (Then name the time coordinate t again.)

These coordinate changes put the metric in a simpler form:

ds2 = e2µ(r)dt2 − e2ν(r)dr2 − r2dΩ 2. (3.3)

This is as far as we can go with spherical symmetry and coordinate changes.
How can we determine the unknowns µ and ν in the metric? Well, the field equa-
tion determines the metric. And since we are interested only in the spacetime
outside the central object, we may use the vacuum field equation R = 0.
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3 Spherically Symmetric Spacetimes 3.2 Schwarzschild Metric

In components the vacuum field equation says Rjk = 0. The Rjk are best
calculated with a computer. We need these three (a prime indicates differenti-
ation with respect to r):

Rtt =
(
−µ ′′ + µ ′ν ′ − µ ′ 2 − 2µ ′r−1

)
e2(µ−ν),

Rrr =
(
−µ ′′ + µ ′ν ′ − µ ′ 2 + 2 ν ′r−1

)
, (3.4)

Rφφ =
(
−rµ ′ + rν ′ + e2ν − 1

)
e−2ν .

Set Rtt = 0 and Rrr = 0, cancel the exponential factor, and subtract:
µ ′+ν ′ = 0. Thus µ+ν = C, a constant. NowRφφ = 0 implies 2 rν ′+e2ν−1 = 0,
or (r e−2ν) ′ = 1. Integrate: e−2ν = 1 − 2m/r, where 2m is a constant of
integration. The metric Eq. (3.3) can now be put in the form

ds2 =

(
1− 2m

r

)
e2Cdt2 −

(
1− 2m

r

)−1

dr2 − r2dΩ 2.

The substitution dt̄ = eCdt eliminates the e2C factor. We arrive at our solution,
the Schwarzschild metric, obtained by Karl Schwarzschild in 1916:

Schwarzschild Metric

ds2 =

(
1− 2m

r

)
dt2 −

(
1− 2m

r

)−1

dr2 − r2dΩ 2. (3.5)

In matrix form the metric is

g = (gjk) =


1− 2m

r 0 0 0

0 −
(
1− 2m

r

)−1
0 0

0 0 −r2 0
0 0 0 −r2 sin2 φ

 .

We shall see later that
m = κM, (3.6)

where κ is the Newtonian gravitational constant of Eq. (2.1) and M is the mass
of the central object. For the Sun m is small:

m = 4.92× 10−6 sec = 1.47 km.

If r � 2m, then the Schwarzschild metric Eq. (3.5) and the flat spacetime
metric Eq. (3.1) are nearly identical. Thus if r � 2m, then for most purposes r
may be considered radial distance and t time measured by slowly moving clocks.

Exercise 3.4. Show that the time ds measured by a clock at rest at r is
related to the coordinate time dt by

ds =

(
1− 2m

r

)1
2

dt. (3.7)

Exercise 3.5. Show that the Schwarzschild metric predicts the sum of the
results of Exercises 1.11 (time dilation) and 2.1 (gravitational redshift) for the
Hafele-Keating experiment: ∆sa −∆sr =

(
1
2 (v2

a − v2
r) + gh

)
∆t .
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3 Spherically Symmetric Spacetimes 3.2 Schwarzschild Metric

Gravitational Redshift. Eq. (2.2) gives a formula for the gravitational
redshift over short distances. Here we generalize to arbitrary distances using
the Schwarzschild metric. Emit pulses of light radially outward from (te, re)
and (te + ∆te, re) in a Schwarzschild spacetime. Observe them at (to, ro) and
(to+∆to, ro). Since the Schwarzschild metric is time independent, the worldline
of the second pulse is simply a time translation of the first by ∆te. Thus
∆to = ∆te. Let ∆se be the time between the emission events as measured by
a clock at rest at re, with ∆so defined similarly. By Eqs. (1.6) and (3.7) an
observer at ro finds a redshift

z =
∆so
∆se

− 1 =
(1− 2m/ro)

1
2 ∆to

(1− 2m/re)
1
2 ∆te

− 1 =

(
1− 2m/ro
1− 2m/re

)1
2

− 1. (3.8)

Exercise 3.6. Show that if re � 2m and ro − re is small, then Eq. (3.8)
reduces to Eq. (2.2), the gravitational redshift formula derived in connection
with the terrestrial redshift experiment. Note that c = 1 in Eq. (3.8).

For light emitted at the surface of the Sun and received at Earth, Eq. (3.8)
gives z = 2 × 10−6. This is difficult to measure but it has been verified within
7%. Light from a star with the mass of the Sun but a smaller radius will, by Eq.
(3.8), have a larger redshift. For example, light from the white dwarf companion
to Sirius has a gravitational redshift z = 3× 10−4. And a gravitational redshift
z = .35 has been measured in X-rays emitted from the surface of a neutron star.

Exercise 3.7. Show that a clock on the Sun will lose 63 sec/year compared
to a clock far from the Sun. The corresponding losses for the white dwarf and
neutron star just mentioned are 2.6 hours and 95 days, respectively.

The most accurate measurement of the gravitational redshift was made in
1976 by an atomic clock in a rocket. The reading of the clock was compared,
via radio, with one on the ground during the two hour flight of the rocket. Of
course the gravitational redshift changed with the changing height of the rocket.
After taking into account the Doppler redshift due to the motion of the rocket,
the gravitational redshift predicted by general relativity was confirmed within
7 parts in 105.
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3 Spherically Symmetric Spacetimes 3.2 Schwarzschild Metric

Geodesics. To determine the motion of inertial particles and light in a
Schwarzschild spacetime, we must solve the geodesic equations Eq. (2.21) for
the spacetime. They are:

ẗ+
2m/r2

1− 2m/r
ṙ ṫ = 0 (3.9)

r̈ +
m(1− 2m/r)

r2
ṫ2 − m/r2

1− 2m/r
ṙ2 − r(1− 2m/r)

(
φ̇2 + sin2φ θ̇2

)
= 0 (3.10)

θ̈ +
2

r
ṙ θ̇ + 2 cotφ φ̇ θ̇ = 0 (3.11)

φ̈+
2

r
ṙφ̇− sinφ cosφ θ̇2 = 0. (3.12)

Exercise 3.8. What are the Christoffel symbols Γ r
tt and Γ t

tr?

From spherical symmetry a geodesic lies in a plane. Let it be the plane

φ = π/2 . (3.13)

This is a solution to Eq. (3.12).

Exercise 3.9. Use Eqs. (3.10) and (3.5) to show that ds = (1− 3m/r)
1
2 dt

for a circular orbit at φ = π/2. (Cf. Exercise 3.4.) This shows that a particle
(with ds > 0) can have a circular orbit only for r > 3m and that light (with
ds = 0) can orbit at r = 3m. (Of course the central object must be inside the
r of the orbit.)

Integrate Eqs. (3.9) and (3.11):

ṫ (1− 2m/r) = B (3.14)

θ̇ r2 = A, (3.15)

where A and B are constants of integration. Physically, A and B are conserved
quantities: A is the angular momentum per unit mass along the geodesic and
B is the energy per unit mass.

Exercise 3.10. Differentiate Eqs. (3.14) and (3.15) to obtain Eqs. (3.9)
and (3.11). (Remember that φ = π/2 .)

Substitute Eqs. (3.13)–(3.15) into Eq. (3.10) and integrate:

ṙ2

1− 2m/r
+
A2

r2
− B2

1− 2m/r
= −E =

{
0 for light

−1 for inertial particles,
(3.16)

where E is a constant of integration. The values given for E are verified by
substituting Eqs. (3.13)–(3.16) into the Schwarzschild metric Eq. (3.5), giving
(ds/dp)2 = E. For light ds = 0 (see Eq. (2.16)) and so E = 0. For an inertial
particle we may take p = s (see Eq. (2.21)) and so E = 1.

The partially integrated geodesic equations Eqs. (3.13)–(3.16) will be the
starting point for the study of the motion of planets and light in the solar system
in the next section.
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Summary. It was a long journey to obtain the partially integrated geodesic
equations, so it might be useful to outline the steps involved:

• We obtained a general form for the metric of a spherically symmetric time
independent spacetime, Eq. (3.2), using coordinate changes and symmetry
arguments.

• We wrote some of the components of the Ricci tensor for the spherically
symmetric metric, Eqs. (3.4). They involve second derivatives of the
metric.

• We wrote the vacuum field equations for the metric by setting the com-
ponents of the Ricci tensor to zero.

• We obtained the Schwarzschild metric, Eq. (3.5), by solving the vacuum
field equations.

• We wrote the geodesic equations for the Schwarzschild metric, Eqs. (3.9)–
(3.12). They involve first derivatives of the metric and are of second order.

• We obtained the first order partially integrated geodesic equations, Eqs.
(3.13)–(3.16), by integrating the second order geodesic equations.

The Constant m. We close this section by evaluating the constant m in the
Schwarzschild metric Eq. (3.5). Consider radial motion of an inertial particle.
By Eq. (3.15), A = 0. Thus Eq. (3.16) becomes

dr

ds
= ±

(
B2 − 1 +

2m

r

)1
2

, (3.17)

the sign chosen according as the motion is outward or inward. Differentiate Eq.
(3.17) and substitute Eq. (3.17) into the result:

d2r

ds2
= −m

r2
. (3.18)

For a distant slowly moving particle, ds ≈ dt. Since the Newtonian theory
applies to this situation, Eqs. (2.1) and (3.18) must coincide. Thus m = κM ,
in agreement with Eq. (3.6).
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3.3 Solar System Tests

This section discusses general relativity’s predictions of the motion of planets
and light in our solar system. There are minuscule differences from the pre-
dictions of Newton’s theory. We shall describe three: perihelion advance, light
deflection, and light delay. The predictions provide tests of general relativity:
do measurements confirm them?

Perihelion Advance. To determine the motion of the planets, we must
solve the geodesic equations. Set u = 1/r. Using Eq. (3.15),

ṙ =
dr

du

du

dθ
θ̇ = −u−2 du

dθ
A r−2 = −Adu

dθ
.

Substitute this into Eq. (3.16), multiply by 1− 2mu, differentiate with respect
to θ, and divide by 2A2du/dθ:

d2u

dθ2
+ u = mA−2E + 3mu2. (3.19)

According to Eq. (3.16), E = 1 for the planets.

Exercise 3.11. The ratio of the terms on the right side of Eq. (3.19) is
3mu2/mA−2. Among the planets, Mercury has the largest ratio. Show that it
is less than 10−7.

Instead of solving Eq. (3.19) directly and exactly, we use a method of succes-
sive approximations to solve it approximately. As a first approximation, solve
Eq. (3.19) without the small 3mu2 term:

u = mA−2 {1 + e cos(θ − θp)} . (3.20)

This is the polar equation of an ellipse with eccentricity e and perihelion (point
of closest approach to the Sun) at θ = θp. The same equation is derived from
Newton’s theory in Appendix 8. Thus, although Einstein’s theory is concep-
tually entirely different from Newton’s, it gives nearly the same predictions for
the planets. This is necessary for any theory of gravity, as Newton’s theory is
very accurate for the planets.

We now obtain a better approximation to the solution of Eq. (3.19). Set
θ = θp in Eq. (3.20):

mA−2 = r−1
p (1 + e)−1. (3.21)

Substitute Eqs. (3.20) and (3.21) into the right side of Eq. (3.19) and solve:

u = r−1
p (1 + e)

−1
{

1 + e
[
cos(θ − θp) + 3mr−1

p (1 + e)
−1
θ sin(θ − θp)

]}
+ mr−2

p (1 + e)
−2 {

3 + 1
2e

2 [ 3− cos(2(θ − θp))]
}
. (3.22)

Drop the last term, which stays small because of the factor mr−2
p . For small α,

cosβ + α sinβ ≈ cosβ cosα+ sinβ sinα = cos(β − α).

Use this approximation in Eq. (3.22):
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u = r−1
p (1 + e)

−1

{
1 + e cos

[
θ −

(
θp +

3mθ

rp (1 + e)

)]}
. (3.23)

This is a good enough approximation to the solution of Eq. (3.19) for our pur-
poses. To understand it, compare it to the equation of an an ellipse with peri-
helion θp, Eq. (3.20): u = r−1

p (1 + e)
−1 {1 + e cos(θ − θp)} (using Eq. (3.21)).

The equations are the same except for the term 3mθ/rp(1+e). Since 3m/rp(1+e)
is very small, θp + 3mθ/rp (1 + e) in Eq. (3.23) is nearly constant over one rev-
olution, θ → θ+ 2π. Thus over the revolution, Eq. (3.23) is nearly the equation
of an ellipse. However, after the revolution the perihelion has advanced by
6mπ/ rp(1 + e). So our picture of the orbit is a slowly rotating ellipse. Ex-

ercise 3.12. Show that for Mercury the predicted perihelion advance is 43.0
arcsecond/century.

The perihelion of Mercury advances 574 arcsec/century. In 1845 Le Verrier
showed that Newton’s theory explains the advance as small gravitational effects
of other planets – except for about 35 arcsec, for which he could not account.
This was refined to 43 arcsec by the time Einstein published the general theory of
relativity. It was the only discrepancy between Newton’s theory and observation
known at that time. Less than an arcminute per century ! This is the remarkable
accuracy of Newton’s theory. The explanation of the discrepancy was the first
observational verification of general relativity. Today this prediction of general
relativity is verified within .1%.

Fig. 3.5: Deflection of light by the sun.

Light Deflection. General rela-
tivity predicts that light passing near
the Sun will be deflected. See Fig. 3.5.
Consider light which grazes the Sun at
θ = 0 when u = up = 1/rp . Set
E = 0 in Eq. (3.19) for light to give
the geodesic equation

d2u

dθ2
+ u = 3mu2. (3.24)

As a first approximation, solve Eq. (3.24) without the small 3mu2 term:
u = up cos θ. This is the polar equation of a straight line. Substitute u = up cos θ
into the right side of Eq. (3.24) and solve to obtain a better approximation:

u = up cos θ + 1
2mu

2
p(3− cos 2θ). (3.25)

At the star, u = 0 and θ = π/2 + δ/2. Substitute these into Eq. (3.25). Use

cos(π/2 + δ/2) = − sin δ/2 ≈ −δ/2, cos(π + δ) = − cos δ ≈ −1

for small δ to obtain the deflection angle δ = 4m/rp. For the Sun, δ = 1.75
arcsec. The Newtonian equation Eq. (2.1) predicts half of this deflection.
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Stars can be seen near the Sun only during a solar eclipse. The prediction
of general relativity was confirmed within about 20% during an eclipse in 1919.
Later eclipse observations improved the accuracy, but not by much.

In 1995 the predicted deflection was verified within .1% using radio waves
emitted by quasars. Radio waves have two advantages. First, radio telescopes
thousands of kilometers apart can work together to measure angles more ac-
curately than optical telescopes. Second, an eclipse is not necessary, as radio
sources can be detected in daylight.

Fig. 3.6: A gravitational lens.

A spectacular example of the grav-
itational deflection of light was discov-
ered in 1979. Two quasars, 6 arcsec
apart in the sky, are in fact the same
quasar! Fig. 3.6 shows how an inter-
vening galaxy causes a double image of
the quasar. The galaxy is a gravita-
tional lens. Many are now known. In
one system, brightness variations in the quasar are seen in one image two years
before the other. Why? Because the lengths of the two paths are different.

It is not necessary that the lensed galaxy be exactly centered behind the
lensing galaxy. But in a few known cases this is nearly so. Then the lensed
galaxy appears as a ring, called an Einstein ring, around the lensing galaxy!
See Fig. 3.7.

Fig. 3.7: An Ein-
stein ring.

Fig. 3.8: Gravitational lensing by a star (main curve)
and an accompanying planet (in the red rectangular
box).

Gravitational lensing has been used to detect planets orbiting other stars.
If a star passes in front of another, gravitational lensing by the foreground
star will brighten the background star. Fig. 3.8 shows a star brightening to a
maximum and then returning to normal. A planet superposes a small blip on
the brightening.

49



3 Spherically Symmetric Spacetimes 3.3 Solar System Tests

Fig. 3.9: Radar echo delay.

Light Delay. Radar can be sent from
Earth, reflected off a planet, and detected
upon its return to Earth. If this is done
as the planet is about to pass behind the
Sun, then according to general relativity,
the radar’s return is delayed by its passage
through the Sun’s gravity. See Fig. 3.9.

To calculate the time t for light to go from Earth to Sun, use Eq. (3.14):

dr

dp
=
dr

dt

dt

dp
=
dr

dt
B

(
1− 2m

r

)−1

.

Set r = rs at the closest approach to the Sun. Then ṙ|r=rs = 0. Substitute into
Eq. (3.16):

A2B−2 = r2
s

(
1− 2m

rs

)−1

.

Divide Eq. (3.16) by B2, substitute the above two equations into the result,
separate the variables, and integrate:

t =

re∫
rs

 (
1− 2m

r

)−2

1− 1−2m/r
1−2m/rs

(
rs
r

)2
1

2

dr. (3.26)

In Appendix 14 we approximate the integral:

t = (r2
e − r2

s)
1
2 + 2m ln(2re/rs) +m. (3.27)

The first term, (r2
e − r2

s)
1
2 , is, by the Pythagorean theorem, the time required

for light to travel in a straight line in a flat spacetime from Earth to Sun. The
other terms represent a delay of this flat spacetime t.

Add analogous delay terms for the path from Sun to Planet, double to include
the return trip, and find for Mercury a delay of 2.4× 10−4 sec. There are many
difficulties in comparing this calculation with measurements. But they have
been overcome and the prediction verified within 5%. Signals from the Cassini
spacecraft to Saturn have confirmed this effect to better that one part in 104.

Quasars can vary in brightness on a timescale of months. We see a variation
in the southern image of the original double quasar 417 days after the same
variation of the northern image. The southern image is 1 arcsec from the lensing
galaxy; that of the northern is 5 arcsec. Thus the light of the northern image
travels farther than that of the southern, causing a delay in the northern image.
But this is more than compensated for by the gravitational delay of the light of
the southern image passing closer to the lensing galaxy.

Geodetic Precession. Another effect of general relativity, called geodetic
precession, is motivated in Figs. 3.10 and 3.11. In Fig. 3.10, a vector in a plane
is moved parallel to itself from A around a closed curve made up of geodesics.
The vector returns to A with its original direction. In Fig. 3.11 a vector on a
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sphere is moved parallel to itself (i.e., parallel to itself in local planar frames),
from A around a closed curve made of geodesics. The vector returns to A rotated
through the angle α. This is a manifestation of curvature.

Fig. 3.10: A parallel transported vec-
tor returns to A with its original direc-
tion.

Fig. 3.11: A parallel transported vec-
tor returns to A rotated through angle
α.

In a flat spacetime the axis of rotation of an inertial gyroscope moves par-
allel to itself in an inertial frame. The same is true in a curved spacetime in
local inertial frames. But in a curved spacetime the orientation of the axis with
respect to the distant stars can change over a worldline. This is geodetic pre-
cession. The rotating Earth-Moon system is a “gyroscope” orbiting the Sun.
The predicted geodetic precession is ∼ .02 arcsec/yr. The lunar laser ranging
experiment has confirmed this to .1%.
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3.4 Kerr Spacetimes

The Kerr Metric. A rotating object has an axis of rotation, and so is
not spherically symmetric. The spacetime around it is not described by the
Schwarzschild metric. The Kerr metric is an axially symmetric solution of the
field equations. It was discovered only in 1963 by Roy Kerr. At sufficiently large
distances from a rotating object, the metric is close to the Kerr metric.

Kerr Metric

ds2 =

(
1− 2mr

Σ

)
dt2 +

4mar sin2φ

Σ
dt dθ − Σ

∆
dr2

−Σ dφ2 −
(
r2 + a2 +

2ma2r sin2φ

Σ

)
sin2φdθ2, (3.28)

where m = κM , as in the Schwarzschild metric; a = J/M , the angular momen-
tum per unit mass of the central object; Σ = r2 + a2 cos2φ ; ∆ = r2− 2mr+ a2;
and the z-axis is the rotation axis.

Exercise 3.13. Show that if the central object is not rotating, then the
Kerr metric Eq. (3.28) reduces to the Schwarzschild metric Eq. (3.5).

Note that the surfaces t = const, r = const in the Kerr metric do not have
the metric of a sphere.

Gravitomagnetism. All of the gravitational effects that we have discussed
until now are due to the mass of an object. Gravitomagnetism is the gravi-
tational effect of the motion of an object. Its name refers to an analogy with
electromagnetism: an electric charge at rest creates an electric field, while a
moving charge also creates a magnetic field.

The Lense-Thirring or frame dragging gravitomagnetic effect causes a change
in the orientation of the axis of rotation of a small spinning object in the space-
time around a large spinning object. An Earth satellite is, by virtue of its orbital
motion, a spinning object, whose axis of rotation is perpendicular to its orbital
plane. The Kerr metric predicts that the axis of a satellite in a circular polar
orbit at two Earth radii will change by ∼ .03 arcsec/yr. This is a shift of ∼ 2
m/yr in the intersection of the orbital and equatorial planes.

The Gravity Probe B experiment, launched in polar orbit in April 2004, was
designed to accurately measure frame dragging on gyroscopes. The experiment
is a technological tour-de-force. Its four gyroscopes are rotating ping-pong ball
sized spheres made of fused quartz, polished within 40 atoms of a perfect sphere,
and cooled to near absolute zero with liquid helium.

To work properly, the gyroscopes must move exactly on a geodesic. In
particular, atmospheric drag and the solar wind must not affect their orbit. To
accomplish this, the satellite is drag free: the gyroscopes are in an inner free
floating part of the satellite, its conscience. The conscience is protected from
outside influences by an outer shell. See Fig. 3.12. Small rockets on the shell
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Conscience

Fig. 3.12: The conscience. Fig. 3.13: The Gravity Probe B experiment.

keep it centered around the conscience when the shell deviates from inertial
motion. Clever!

The predicted frame dragging precession is .04 arcsec/year. See Fig. 3.13.
The experiment was designed to test this to about 1%, but only achieved, it
is claimed, 20% accuracy. The experiment also measured geodetic precession.
The predicted geodetic precession was 6.6 arcsec/year. The experiment was
designed to test this to one part in .01%, but the final analysis of the data only
achieved .3% accuracy.

Frame dragging has been measured to an accuracy of 5% by tracking the
orbits of several completely passive laser ranged satellites in very stable Earth
orbits. Each satellite is a small (< 1 meter) sphere.

The frame dragging effects of the rotat-

Fig. 3.14: Artist’s depiction of an
accretion disk.

ing Earth are tiny. But frame dragging is an
important effect in accretion disks around
a rotating black hole. (Sec. 3.6 discusses
black holes.) Accretion disks form when
a compact star (white dwarf, neutron star,
or black hole) in a binary star system at-
tracts matter from its companion, forming
a rapidly rotating disk of hot gas around
it. Fig. 3.14 shows an artist’s depiction
of an accretion disk. There is evidence that
frame dragging causes the axis of some disks

around black holes to precess hundreds of revolutions a second.
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Clock effect. Satellites in the same circular equatorial orbit in a Kerr
spacetime but with opposite directions take different coordinate times ∆t± for
the complete orbits θ → θ±2π. (After a complete orbit the satellite is not above
the same point of the spinning central object.) We derive this gravitomagnetic
clock effect from the t-geodesic equation for circular equatorial orbits in the
Kerr metric:

ṫ 2 − 2aṫθ̇ +

(
a2 − r3

m

)
θ̇2 = 0. (3.29)

Solve for dt/dθ:

dt

dθ
= ±

(
r3

m

)1
2

+ a. (3.30)

If a = 0, then this reduces to the Schwarzschild value dt/dθ = ±(r3/m)
1
2 .

Consider first the orbit θ → θ+2π, with period ∆t+. Integrating Eq. (3.30)

over the orbit multiplies the right side by 2π: ∆t+ = 2π(r3/m)
1
2 + 2πa. (Since

dt/dθ > 0, we use the “+” sign on the right side of Eq. (3.30).) Now consider
the orbit θ → θ − 2π. Integrating Eq. (3.30) over the orbit multiplies the right

side by −2π: ∆t− = 2π(r3/m)
1
2 − 2πa. (Since dt/dθ < 0, we use the “−” sign

on the right side of Eq. (3.30).) Thus ∆t+ −∆t− = 4πa; an orbit in the sense
of a takes longer than its opposite orbit. The difference is independent of the
orbital period.

Exercise 3.14. Show that for the Earth, ∆t+ −∆t− = 2× 10−7 sec. This
has not been measured.
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3.5 Extreme Binary Systems

We have seen that the differences between Einstein’s and Newton’s theories
of gravity are exceedingly small in the solar system. Large differences require
stronger gravity and/or larger velocities. Both are present in some binary star
systems consisting of two collapsed stars.

Fig. 3.15: Double pul-
sar. (Artist’s depiction.)

One spectacular system consisting of two pulsars
was discovered in 2003. The system, called the double
pulsar, provides the most stringent tests of general rel-
ativity to date. Fig. 3.15 shows an artist’s depiction.

One pulsar, of 1.4 solar masses, spins at 44 revo-
lutions/second, the other, of 1.25 solar masses. at .36
revolutions/second. The pulsars are less than a solar
diameter apart, with an orbital period of 2.4 hours.
Imagine!

The pulsars’ pulses serve as the ticking of very ac-
curate clocks in the system. Several relativistic effects have been measured by
analyzing the arrival times of the pulses at Earth. Several changing relativistic
effects affect the arrival times: a gravitational redshift of the rate of clocks on
Earth as the Earth’s distance from the Sun changes over a year, a gravitational
redshift of the time between the pulses as the pulsars move in their elliptical
orbits, a time dilation of the pulsars’ clocks due to their motion, and a light
delay of the pulses. The measured delay is within .05% of the predictions of
general relativity.

The periastron advance of the pulsars is 17 ◦/year, 150,000 times that of
Mercury. (Perihelion refers to the Sun; periastron is the generic term.) The
measured geodetic precession in the system is 4.8◦/year, within 13% of the
predictions of general relativity. This is 5 million times larger than the precession
in the Earth-Moon system! The accuracy will improve as observations extend
over the years.

Most important, the system provides evidence for the existence of gravita-
tional waves, which are predicted by general relativity. Gravitational waves are
propagated disturbances in the metric caused by matter in motion. They travel
at the speed of light and carry energy away from their source. Violent astro-
nomical phenomena, such as supernovae and the big bang, emit gravitational
waves. So far, none has been directly detected on Earth. (But see Sec. 4.5.)

General relativity predicts that the orbital period of the double pulsar de-
creases by about 4 × 10−5 sec/year due to energy loss from the system from
gravitational radiation. This is confirmed within 0.5%. The prediction is based
on the full field equation, rather than the vacuum field equation used earlier
in this chapter. Binary neutron stars provide the only precision test of the full
field equation to date.

As gravitational waves carry energy away from the binary pulsar system,
the stars come closer together. They will collide in about 85 million years,
with an enormous burst of gravitational radiation. Such collisions are the most
promising candidates for sources of gravitational waves detectable on Earth.
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Fig. 3.16: Two white
dwarfs with gravitational
wave ripples in spacetime.
(Artist’s conception.)

Another system, discovered in 2011, consists of
two white dwarfs in a 12.75 minute orbit. See Fig.
3.16. The system, designated J0651, is 3000 light
years away. One of the stars has half of the Sun’s
mass and is about the size of Neptune. The other has
a quarter of the Sun’s mass and is about the size of
the Earth. The stars eclipse each other during their
orbit. Due to the emission of gravitational waves
the eclipses occur five seconds (!) earlier over the
course of a year. “This is a general relativistic effect
you could measure with a wrist watch”, said one
researcher. The stars will merge in two million years.
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3.6 Black Holes

Schwarzschild Black Holes. The −(1 − 2m/r)−1dr2 term in the
Schwarzschild metric Eq. (3.5) has a singularity at r = 2m, the Schwarzschild
radius. For the Sun, the Schwarzschild radius is 3 km and for the Earth it is .9
cm, well inside both bodies. Since the Schwarzschild metric is a solution of the
vacuum field equation, valid only outside the central body, the singularity has
no relevance for the Sun or Earth.

However, we may inquire about the properties of an object which is inside
its Schwarzschild radius. The object is then a black hole. The r = 2m surface
is called the (event) horizon of the black hole.

Suppose a material particle or pulse of light moves outward (not necessarily
radially) from the horizon r1 = 2m to r2. Since ds2 ≥ 0 and dΩ2 ≥ 0 , the
Schwarzschild metric Eq. (3.5) shows that dt ≥ (1−2m/r)−1dr. Thus the total
coordinate time ∆t for the trip satisfies

∆t ≥
r2∫

2m

(
1− 2m

r

)−1

dr =

r2∫
2m

(
1 +

2m

r − 2m

)
dr =∞ ;

neither matter nor light can reach r2 at any finite t. Thus neither matter nor
light can escape a Schwarzschild black hole! The same calculation shows that it
takes an infinite coordinate time ∆t for matter or light to reach the horizon from
r2. Thus a distant observer will not see the matter or light cross the horizon.

Exercise 3.15. Suppose an inertial object falling radially toward a black
hole is close to the horizon, so that r− 2m is small. Use Eqs. (3.14) and (3.17)
and approximate to show that dr/dt = (2m− r)/2m. Integrate and show that
r − 2m decreases exponentially in t.

According to Eq. (3.8), the gravitational redshift of an object approaching a
Schwarzschild black hole increases to infinity as the object approaches the hori-
zon.1 A distant stationary observer will see the rate of all physical processes on
the object slow to zero as it approaches the horizon. In particular, its brightness
(rate of emission of light) will dim to zero and it will effectively disappear. But
the observer will never see it cross the horizon.

On the other hand, an inertial observer radially approaching a Schwarzschild
black hole will measure a finite time to cross the horizon. To see this, recall that
a clock carried by the inertial observer measures proper time ds. By Eq. (3.17),
|dr/ds| increases as r decreases. Thus the observer will cross the horizon, never
to return, in a finite proper time measured by the clock.

1Equation (3.8) applies to objects at rest. For objects falling toward the horizon, a Doppler
effect causes an even larger redshift.
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The Horizon. We can give the point with coordinates (x, y) in a plane
new coordinates (1/x, 1/y). Thus the point with usual coordinates (2, 3) has
new coordinates ( 1

2 ,
1
3 ). The new coordinates provide a perfectly valid, if in-

convenient, coordinate system – except when x = 0 or y = 0, where they have
singularities. The problem is with the new coordinates; there is nothing wrong
with the plane when x = 0 or y = 0.

In a similar way, the singularity at the horizon in the Schwarzschild metric
is a coordinate singularity; there is no physical singularity in the spacetime.
Someone crossing it would not notice anything special.

To see this, introduce Painlevé 2 coordinates with the coordinate change

dt = dt̄+
(2mr)

1
2

r − 2m
dr.

in the Schwarzschild metric.

Exercise 3.16. Show that the metric in Painlevé coordinates is

ds2 = dt̄2 −

(
dr +

(
2m

r

) 1
2

dt̄

)2

− r2dΩ 2.

The only singularity in this metric is at r = 0. Thus there is no physical
singularity at the horizon. The r = 0 singularity is a physical singularity.

Kerr Black Holes. The spacetime of a Kerr black hole is even more
peculiar than that of a Schwarzschild black hole. The −(Σ/∆)dr2 term in the
Kerr metric Eq. (3.28) has a singularity when ∆ = 0, the horizon of a Kerr
black hole.

Exercise 3.17. Show that the horizon is at r = m+ (m2 − a2)
1
2 .

As with a Schwarzschild black hole, there is no singularity in the spacetime
at the horizon. And it is impossible to escape the Kerr horizon, even though it
is possible to reach it in finite proper time. The proofs are more difficult than
for the Schwarzschild metric. They are not given here.

A second surface of interest for a Kerr black hole is where (1−2mr/Σ) dt2 = 0,
the static limit. There is no singularity in the spacetime on this surface.

Exercise 3.18. Show that the static limit is at r = m+ (m2 − a2 cos2φ)
1
2 .

Fig. 3.17: The horizon (inner
surface) and static limit (outer
surface) of a Kerr black hole.

Fig. 3.17 shows the axis of rotation of a Kerr
black hole, the static limit, and the horizon.
The crescent shaped region between the hori-
zon and the static limit is the ergosphere. In the
ergosphere, the dt2, dr2, dφ2, and dθ2 terms in
the Kerr metric Eq. (3.28) are negative. Since
ds2 ≥ 0 for both particles and light, the dtdθ
term must be positive, i.e., a(dθ/dt) > 0. In
the ergosphere it is impossible to be at rest, and
motion must be in the direction of the rotation.

2 Paul Painlevé, 1863-1933, was briefly Prime Minister of France.
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Black Holes in Nature. General relativity allows black holes, but do they
actually exist? The answer is “yes”. They cannot be observed directly, as they
emit no radiation. They must be inferred from their gravitational effects. At
least two varieties are known: solar mass black holes, of a few solar masses, and
supermassive black holes, of 106−1010 solar masses. There have also been a few
(only) detections of 102−104 solar mass black holes.

We saw in Sec. 3.1 that the Earth, the Sun, white dwarf stars, and neutron
stars are stabilized by different forces. No known force can stabilize a star larger
than ∼3 solar masses when it exhausts its nuclear fuel. Stellar masses range up
to 100 solar masses. A massive star can shed a large fraction of its mass late in
its life. Unless it ends up under three solar masses, it will become a black hole.

Several black holes of a few solar masses are known in our galaxy. They
are members of X-ray emitting binary star systems in which a normal star is
orbiting with a compact companion. In some of these systems the companion’s
mass is small enough to be a neutron star. But in others, the companion is well
over the three solar mass limit, and is therefore believed to be a black hole. In
one case the companion has 20 solar masses.

During “normal” periods, gas pulled from the normal star and heated vio-
lently on its way to the compact companion causes the X-rays. Many of the
systems with a neutron star companion exhibit periods of much stronger X-ray
emission. Sometimes the cause is gas suddenly crashing onto the surface of the
neutron star. Sometimes the cause is a thermonuclear explosion of material
accumulated on the surface. Systems with companions over three solar masses
never exhibit such periods. Presumably this is because the companions are black
holes, which do not have a surface.

Many, if not most, galaxies have a supermassive black hole at their center –
topping off at at least 2× 1010 solar masses! Gas can fall into the black hole in
such large quantities that the gas is heated to high temperatures and emits vast
quantities of electromagnetic radiation. This is the explanation of quasars.

There is a supermassive black hole at the center of our galaxy, about 26,000
light years away in the direction of the constellation Sagittarius. One star
orbiting the black hole has eccentricity .87, closest approach to the hole 17 light
hours while traveling 5000 km/sec, and period 15 years. This implies that the
black hole is ≈ 3.5 million solar masses.

Exercise 3.19. Compute the Schwarzschild radius of this black hole and
compare it to the radius of Mercury’s orbit.

There is also good evidence for a small population of intermediate black
holes, i.e., with mass between those of solar mass and supermassive black holes.
Examples include 400, 5000, and 20, 000 solar mass black holes.
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Most stars rotate. Due to conservation of angular momentum, a rotating
star collapsed to a black hole will spin rapidly. Also, angular momentum can
be transferred from an accretion disk to its black hole. An important theorem
states that an (uncharged) rotating black hole will very quickly settle down to a
Kerr black hole by emitting gravitational waves. For example, a collision of two
black holes will not immediately produce a Kerr black hole, but it will quickly
become one. Thus the Kerr metric is of fundamental astrophysical importance.

It is believed that here is a limit to the angular momentum of a Kerr black
hole: the angular momentum parameter a = J/M in the Kerr metric, Eq.
(3.28), satisfies |a/m| < 1. The black hole at the center of our galaxy is spinning
rapidly: there is good evidence that that |a/m| ≥ .6.

A double supermassive black hole system has recently been analyzed. The
larger black hole has 17 billion solar masses – the largest known. The other,
of 100 million solar masses, orbits it at about 10% of the speed of light and
with a period of 12 years. It crosses the accretion disk of the larger black hole
twice each orbit, about a year apart, causing flares seen from Earth. See Figure
3.18. The timing of the flares was used to determine the orbit. It precesses
39◦/revolution. The system is the “brightest” known source of gravitational
radiation – 1010 brighter than the binary pulsar. The radiation causes the
orbital period to decay by 20 days/orbit. The black holes will merge in less
than ten thousand years.

Fig. 3.18: A double supermassive black hole
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Chapter 4

Cosmological Spacetimes

4.1 Our Universe I

This chapter is devoted to cosmology , the study of the universe as a whole. Since
general relativity is our best theory of space and time, we use it to construct
a model of the spacetime of the entire universe, from its origin, to today, and
into the future. The universe is viewed as a single physical system. This is an
audacious move, but we shall see that the model is very successful. We will
begin with a description of the universe as seen from Earth.

I emphasize the word “seen” above. In Section 4.4, we will learn that most of
the matter and energy in the universe is not seen as electromagnetic radiation,
but is detected by other means.

First I note the following. There are lots of big numbers in this chapter. You
need to get a sense of the relative size of these numbers; just thinking of them
as “big” is not good enough. For example, a billion light years is to a million
light years as a kilometer is to a meter.
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Galaxies. The Sun is but one star of hundreds of billions held together
gravitationally to form the Milky Way galaxy. The Milky Way is about 150,000
light years across. It is but one of tens of billions of galaxies in the visible
universe. The Andromeda galaxy, about 2.5 million light years away, is the
closest major galaxy to our own. See Fig. 4.1. Nearly everything you see in
Fig. 4.2 is a galaxy. Importantly for us, galaxies are inertial objects.

Galaxies cluster in groups of up to several thousand. These are the largest
structures in the unverse bound by gravity.

Fig. 4.1: The Andromeda galaxy. Fig. 4.2: Galaxies galore!

The Universe Expands. All galaxies, except a few nearby, recede from
us with a velocity v proportional to their distance d from us:

v = Hd . (4.1)

This is the “expansion of the universe”. Eq. (4.1) is Hubble’s law ; H is Hubble’s
constant. Its value is 19.1 (km/sec)/million light years, within 1%.

Fig. 4.3: Balloon
analogy to the universe.

An expanding spherical balloon, on which bits of
paper are glued, each representing a galaxy, provides a
very instructive analogy. See Fig. 4.3. The balloon’s
two dimensional surface is the analog of our universe’s
three dimensional space. The galaxies are glued, not
painted on, because they do not expand with the uni-
verse. From the viewpoint of every galaxy on the bal-
loon, other galaxies recede from it, and Eq. (4.1) holds.
Thus the the fact that galaxies recede from us does not
mean that we occupy a special place in the universe.

We see the balloon expanding in an already existing
three dimensional space, but surface dwellers are not
aware of this third spatial dimension. For both surface

dwellers in their universe and we in ours, galaxies separate not because they are
moving apart in a static fixed space, but because space itself is expanding.
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What is the evidence for Hubble’s law, v = Hd? We cannot verify it directly
because neither d nor v can be measured directly. But they can be measured
indirectly, to moderate distances, as follows.

The distance d to objects at moderate distances can be determined from
their luminosity (energy received at Earth/unit time/unit area). If the object
is near enough so that relativistic effects can be ignored, then its luminosity `
at distance d is its intrinsic luminosity L (energy emitted/unit time) divided by
the area of a sphere of radius d: ` = L/4πd 2 . Thus if the intrinsic luminosity
of an object is known, then its luminosity determines its distance. The intrin-
sic luminosity of various types of stars and galaxies has been approximately
determined, allowing an approximate determination of their distances.

The velocity v of galaxies to moderate distances can be determined from
their redshift. Light from all galaxies, except a few nearby, exhibits a redshift
z > 0. This is a key cosmological observation. By definition, z = fe/fo − 1
(see Eq. (1.7)). If fe is known (for example if the light is a known spectral
line), then z is directly and accurately measurable. Eq. (4.11) shows that the
redshifts are not Doppler redshifts, but expansion redshifts, the result of the
expansion of space.

However, to moderate distances we can ignore relativistic effects and deter-
mine v using the approximate Doppler formula z = v from Exercise 1.6 b.
Substituting z = v into Eq. (4.1) gives z = Hd, valid to moderate distances.1

This approximation to Hubble’s law was established in 1929 by Edwin Hubble.
Since z increases with d, we can use z (which is directly and accurately

measurable), as a proxy for d (which is not). Thus we say that a galaxy is “at”,
e.g., z = 2.

The Big Bang. Reversing time, the universe contracts. From Eq. (4.1)
galaxies approach us with a velocity proportional to their distance. Thus they
all arrive here at the same time. Continuing into the past, the matter in the
universe was extremely compressed, and thus at an extremely high temperature,
accompanied by extremely intense electromagnetic radiation. Matter and space
were taking part in an explosion, called the big bang. The recession of the
galaxies that we see today is the continuation of the explosion. The big bang is
the origin of our universe. It occurred 13.8 billion years ago.

There is no “site” of the big bang; it occurred everywhere. Our balloon again
provides an analogy. Imagine it expanding from a point, its big bang. At a later
time, there is no specific place on its surface where the big bang occurred.

Because the speed of light is finite, we see a galaxy not as it is today, but as
it was when the light we detect from it was emitted. When we look out in space,
we look back in time! Fig. 4.4 illustrates this. Astronomers study the early
universe by studying the distant universe. The light from the farthest (oldest)
known galaxy (so far) was emitted when the universe was only ∼ 400 million
years old. It has a redshift z = 11.1.

1The precise relation between z and d is given by the distance-redshift relation, derived in
Appendix 16.
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Fig. 4.4: The redshift z of a galaxy
vs. the age of the universe t (in 109

years) when the light we see from it
was emitted.

The Cosmic Microwave Back-
ground. In 1948 Ralph Alpher and
Robert Herman predicted that the in-
tense electromagnetic radiation from the
big bang, much diluted and cooled by
the universe’s expansion, still fills the uni-
verse. In 1965 Arno Penzias and Robert
Wilson, quite by accident and unaware of
the prediction, discovered microwave radi-
ation with the proper characteristics. This
cosmic microwave background (CMB) is
strong evidence that a big bang actually
occurred.

The CMB has a 2.7 K blackbody spec-
trum. The radiation started its journey
toward us ∼ 370, 000 years after the big
bang, when the universe had cooled to
about 3000 K, allowing nuclei and electrons to condense into neutral atoms,
which made the universe transparent to the radiation.

To a first approximation the CMB is isotropic, i.e., spherically symmetric
about us. However, in 1977 astronomers measured a small dipole anisotropy.
After correcting for the Earth’s velocity around the Sun, the anisotropy is a
relative redshift in the CMB of z = −.0012 cos θ, where θ is the angle from the
constellation Leo.

Exercise 4.1. Explain this as due to the solar system moving toward Leo at
360 km/sec with respect to an isotropic CMB. In this sense we have discovered
the absolute motion of the Earth.

After correcting for the dipole anisotropy, the CMB is isotropic to 1 part in
104.

Further evidence for a big bang comes from the theory of big bang nucleosyn-
thesis. The theory predicts that in the first few minutes after the big bang, nuclei
formed, almost all hydrogen (75% by mass) and helium-4 (25%), with traces of
some other light elements. Observations confirm this. This is a spectacular
success of the big bang theory. Other elements contribute only a small fraction
of the mass of the universe. They are mostly formed in stars and are strewn
into interstellar space by supernovae and by other means, to be incorporated
into new stars, their planets, and any life which may arise on the planets.

The big bang is part of the most remarkable generalization of science: The
universe had an origin and is evolving at many interrelated levels. Galaxies,
stars, planets, life, and cultures all evolve.
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4.2 The Robertson-Walker Metric

Our cosmological model assumes that the universe is exactly isotropic about
every point. Most astronomers believe that that observations confirm this, but
it has recently been questioned by some. The assumption spreads the galaxies
into a uniform distribution of inertial matter, i.e., dust. This is rather like
taking the Earth to be exactly spherical; it is not, but a sphere is an excellent
approximation for many purposes.

We first set up a coordinate system (t, r, φ, θ) for the universe. As the uni-
verse expands, the temperature of the CMB decreases. Place a clock at rest in
every galaxy and set it to some agreed on time when some agreed on tempera-
ture is observed at the galaxy. The t coordinate is the (proper) time measured
by these clocks.

Choose any galaxy as the spatial origin. Isotropy demands that the φ and θ
coordinates of other galaxies do not change in time. Choose any time t0. Define
the r coordinate at t0 to be any quantity that increases with increasing distance
from the origin. Galaxies in different directions but at the same distance are
assigned the same r. Now define the r coordinate of a galaxy so that it does not
change in time: the particular r coordinate assigned at time t0 is also assigned
at other times. Isotropy ensures that all galaxies at a given t and r are at the
same distance from the origin.

The coordinates (r, φ, θ) are said to be comoving . Distances between galaxies
change in time not because their (r, φ, θ) coordinates change, but because their
t coordinate changes, which changes the metric.

Our balloon provides an analogy. Recall that the metric of a unit sphere is
dΩ 2 = dφ2 + sin2φ dθ2. If the radius of the balloon at time t is S(t), then the
balloon’s metric at time t is

ds2 = S 2(t) dΩ 2. (4.2)

If S(t) increases, then the balloon expands. Distances between the glued on
galaxies increase, but their comoving (φ, θ) coordinates do not change.

Exercise 4.2. Derive the analog of Eq. (4.1) for the balloon. Let d be the
distance between two galaxies on the balloon at time t, and let v be the speed
with which they are separating. Show that v = Hd, where H = S ′(t)/S(t).
Hint: Peek ahead at the derivation of Eq. (4.9).

Exercise 4.3. Substitute sinφ = r/(1 + r2/4) in Eq. (4.2). Show that the
metric with respect to the comoving coordinates (r, θ) is

ds2 = S 2(t)
dr2 + r2dθ2

(1 + r2/4)
2 . (4.3)

Again, distances between the glued on galaxies increase with S(t) , but their

comoving (r, θ) coordinates do not change.

The metric of an isotropic universe, after suitably choosing the comoving r
coordinate, is:
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Robertson-Walker Metric

ds2 = dt2 − S 2(t)
dr2 + r2dΩ 2

(1 + k r2/4)
2 (k = 0,±1)

≡ dt2 − S 2(t) dσ2. (4.4)

The constant k indicates the curvature of the spatial metric S(t)dσ. There are
three possibilities: k = −1, 0, 1 for negatively curved, flat, and positively curved
space respectively. The elementary but somewhat involved derivation of the
metric is given in Appendix 15. The field equation is not used. We will use it
in Sec. 4.4 to determine S(t).

The metric was discovered independently by H. P. Robertson and E. W.
Walker in the mid 1930’s. You should compare it with the metric in Eq. (4.3).

Distance. Emit a light pulse from a galaxy to a neighboring galaxy. Since
ds = 0 for light, Eq. (4.4) gives dt = S(t) dσ. By the definition of t, or from Eq.
(4.4), t is measured by clocks at rest in galaxies. Thus dt is the elapsed time
in a local inertial frame in which the emitting galaxy is at rest. Since c = 1 in
local inertial frames, the distance between the galaxies is

S(t) dσ. (4.5)

This is the distance measured by an inertial rigid rod. The distance is the
product of two factors: dσ, which is independent of time, and S(t), which is
independent of position. Thus S is a scale factor for the universe: if, e.g., S(t)
doubles over a period of time, then so do all distances between galaxies.

The metric of points at coordinate radius r in the Robertson-Walker metric
Eq. (4.4) is that of a sphere of radius r S(t)/(1 + k r2/4). From Eq. (4.5) this
metric measures physical distances. Thus the sphere has surface area

A(r) = 4π

(
r S(t)

1 + k r2/4

)2

(4.6)

and contains the volume

V (r) = S(t)

r∫
0

A(ρ)

1 + kρ2/4
dρ . (4.7)

If k = −1 (negative spatial curvature), then r is restricted to 0 ≤ r < 2.
The substitution ρ = 2 tanh ξ shows that V (2) = ∞, i.e., the universe has
infinite volume. If k = 0 (zero spatial curvature, flat), 0 ≤ r < ∞ and the
universe has infinite volume. If k = 1 (positive spatial curvature), then A(r)
increases as r increases from 0 to 2, but then decreases to zero as r →∞. The
substitution ρ = 2 tan ξ shows that V (∞) = 2π2S 3(t); the universe has finite
volume. The surface of our balloon provides an analogy. It has finite area and
positive curvature. Circumferences of circles of increasing radius centered at the
North pole increase until the equator is reached and then decrease to zero.
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4.3 Expansion Effects

Hubble’s Law. At time t the distance from Earth at r = 0 to a galaxy at
r = re is, by Eq. (4.5),

d = S(t)

re∫
0

dσ. (4.8)

This is the distance that would be obtained by adding the lengths of small rigid
rods laid end to end between Earth and the galaxy at time t. (Yes, I know this
is not a practical way to measure d !) The distance d increases with S.

Differentiate to give the velocity of the galaxy with respect to the Earth:

v = S ′(t)

re∫
0

dσ.

Divide to give Hubble’s law v = Hd , Eq. (4.1), where Hubble’s constant is
given by

H(t) =
S ′(t)

S(t)
. (4.9)

We see that Hubble’s “constant” H(t) depends on t. But for a fixed t (e.g.,
today), v = Hd holds for all distances and directions.

From v = Hd we see that if d = 1/H ≈ 13.6 billion light years, then v = 1 ,
the speed of light. Galaxies beyond this distance are today receding from us
faster than the speed of light. What about the rule “nothing can move faster
than light”? In special relativity the rule applies to objects moving in an inertial
frame, and in general relativity to objects moving in a local inertial frame. There
is no local inertial frame containing both the Earth and such galaxies.

The distance d = 1/H is at z = 1.5 . This follows from the distance-redshift
relation, derived in Appendix 16.

The Expansion Redshift. We obtain a relationship between the expansion
redshift of light from a galaxy and the size of the universe when the light was
emitted. Suppose that a light pulse is emitted toward us at events (te, re) and
(te + ∆te, re) and received by us at events (to, 0) and (to + ∆to, 0). Since ds = 0
for light, Eq. (4.4) gives

dt

S(t)
=

dr

1 + k r2/4
. (4.10)

Integrate this over both light worldlines to give

to∫
te

dt

S(t)
=

re∫
0

dr

1 + k r2/4
=

to+∆to∫
te+∆te

dt

S(t)
.
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Subtract
∫ to
te+∆te

from both ends to give

te+∆ te∫
te

dt

S(t)
=

to+∆to∫
to

dt

S(t)
.

If ∆te and ∆to are small, this becomes ∆te/S(te) = ∆to/S(to). Use Eq. (1.6)
to obtain the desired relation:

z + 1 =
S(to)

S(te)
. (4.11)

This wonderfully simple formula directly relates the expansion redshift to the
universe’s expansion. Since S = 0 at the big bang, the big bang is at z =∞.

The most distant galaxy ever seen is at redshift z = 8.68, only 570 million
years after the big bang. Gravitational lensing brightened the galaxy, perhaps
by about 10Distances between galaxies were 1/9.7 – about 10% – of what they
are today when the light we see from the galaxy was emitted (Eq. (4.11)). The
observed frequency of light from the galaxy is 10% of the emitted frequency
(Eq. (1.7)). The observed rate of any other physical process detected at that
distance, would also be 10% of the actual rate (Eq. (1.6)).

Supernovae exhibit this effect. All type Ia supernovae have about the same
duration. But supernovae out to z = .8 (the farthest to which measurements
have been made) appear to last 1 + z times longer as seen from Earth.

CMB Temperature. The CMB today is blackbody radiation at temper-
ature T (0) = 2.7 K. According to Planck’s law, its intensity at frequency fo is
proportional to

f3
o

ehfo/kT (0) − 1
,

where h is Planck’s constant and k is Boltzmann’s constant. At distance z the
radiation was at frequency fe, where by Eq. (1.7), fe/fo = z + 1. Thus the
intensity of the radiation at z was proportional to

f3
e

ehfe/kT (z) − 1
,

where
T (z) = (z + 1)T (0). (4.12)

The spectrum was also blackbody, at temperature T (z).
As stated in Sec. 4.1, the CMB was emitted at ≈ 3000 K. Thus from Eq.

(4.12), its redshift z ≈ 3000 K/2.7 K ≈ 1100.
Analysis of spectral (absorption) lines from a molecular hydrogen cloud at

z = 3 backlit by a more distant quasar shows that the temperature of the CMB
at z = 3 was ∼11 K CMB. Eq. (4.12) predicts this: T (3) = (3 + 1)T (0) ≈ 11 K.
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4.4 Our Universe II

The Robertson-Walker metric Eq. (4.4) is a consequence of isotropy alone; the
field equation was not used in its derivation. There are two unknowns in the
metric: the curvature k and the expansion factor S(t). In this section we first
review the compelling observational evidence that k = 0, i.e., that our universe
is spatially flat. Together with other data, this will force us to modify the field
equation. We then solve the modified field equation to determine S(t).

The Universe Is Flat. The CMB provides evidence that our universe
is spatially flat. When the CMB was emitted, matter was almost, but not
quite, uniformly distributed. The variations originated as random quantum
fluctuations. We can “see” them because regions of higher density were hotter,
leading to tiny temperature anisotropies (a few parts in 105) in the CMB. Figure
4.5, from the Planck spacecraft, shows colder regions in blue, and hotter in red.

Fig. 4.5: Temperature fluctuations in the CMB.

The size of these regions does not depend on the curvature of space, but
their angular size observed from Earth does. In a flat universe, the average
temperature difference as a function of angular separation peaks at about .8
arcdegree. Observations in 2000 found the peak at .8 arcdegree, providing com-
pelling evidence for a spatially (nearly) flat universe.

To understand how curvature can affect angular size, consider the everyday
experience that the angular size of an object decreases with distance. The rate
of decrease is different for differently curved spaces. Imagine surface dwellers
whose universe is the surface of the sphere in Fig. 4.6 and suppose that light
travels along the great circles of the sphere. According to Exercise 2.10 these
circles are geodesics. For an observer at the north pole, the angular size of an
object of length D decreases with distance, but at a slower rate than on a flat
surface. And when the object crosses the equator, its angular size begins to
increase. The object has the same angular size α at the two positions in the
figure. On a pseudosphere the angular size decreases at a faster rate than on a
flat surface.
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Fig. 4.6: Angular size
on a sphere.

The angular size-redshift relation gives the relation-
ship between the angular size and redshift of objects in
an expanding universe. It is derived in Appendix 16
and graphed in Fig. 4.9. We shall see that the middle
graph in the figure corresponds to our universe. It has
a minimum at z = 1.6.

The Field Equation. Despite the strong evidence
for a flat universe, we shall see that the field equation
G = −8πκT, Eq. (2.28), applied to the Robertson-
Walker metric, Eq. (4.4), with k = 0, gives results in
conflict with observation. Several solutions to this problem have been proposed.
The simplest is to add a term Λg to the field equation:

G + Λg = −8πκT , (4.13)

where Λ is a constant, called the cosmological constant. This is the most natural
change possible to the field equation. In fact, the term Λg appears in the field
equation Eq. (A.16). It is eliminated there by assuming that spacetime is flat
in the absence of matter. Thus the new term represents a gravitational effect
of empty space; it literally “comes with the territory”.

The cosmological constant Λ is so small that its effects in the solar system
cannot be measured with today’s technology. But we shall see that it dramati-
cally affects the expansion of the universe.

To apply the new field equation, we need the energy-momentum tensor T. In
Sec. 4.2 we spread the matter in the universe into a uniform distribution of dust.
Thus T is of the form Eq. (2.27). For the comoving matter, dr = dθ = dφ = 0,
and from Eq. (4.4), dt/ds = 1. Thus T tt = ρ(t) is the only nonzero T jk.

The field equation Eq. (4.13) for the Robertson-Walker metric Eq. (4.4) with
k = 0 and the T just obtained reduces to two ordinary differential equations:

−3

(
S ′

S

)2

+ Λ = −8πκρ , (tt component) (4.14)

S ′2 + 2SS ′′ − ΛS 2 = 0 . (rr, φφ, θθ components) (4.15)

Before solving the equations for S, we explore some of their consequences as
they stand.

From Eqs. (4.14) and (4.9),

ρ+
Λ

8πκ
= ρc , (4.16)

where
ρc =

3H2

8πκ
(4.17)

is called the critical density . Today ρc ≈ 10−29g/cm
3

– the equivalent of a few
hydrogen atoms per cubic meter. This is 10−7 as dense than the best vacuum
created on Earth.
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The term Λ/8πκ in Eq. (4.16), like the other two terms, has the dimensions
of a density. It is the density of a component of our universe called dark energy.
We’ll say more about dark energy soon. According to Eq. (4.16) the density of
matter and dark energy add to ρc . But general relativity does not determine
their individual values. They have been determined by observation. We discuss
the results, first for matter and then for dark energy.

Matter. Two accurate determinations of the matter density ρ were an-
nounced in 2003. One used precise measurements of the anisotropies in the
CMB. The other used measurements of the 3D distribution of hundreds of
thousands of galaxies. Recent refinements of these two very different kinds
of measurements give ρ = .32ρc. Some of this matter is in known forms such as
protons, neutrons, electrons, neutrinos, and photons. But most is in a mysteri-
ous component of our universe called dark matter.

The measurements show that known forms of matter contribute only .05ρc to
ρ. This is consistent with two earlier, less accurate, determinations. One used
spectra of distant galactic nuclei to “directly” measure the density of known
forms of matter in the early universe. The other used the theory of big bang
nucleosynthesis, which expresses the density of ordinary matter as a function of
the abundance of deuterium in the unverse. This abundance was measured in
distant pristine gas clouds backlit by even more distant quasars.

It is gratifying to have excellent agreement between the CMB and deuterium
measurements, as the deuterium was created a minute or so after the big bang
and the CMB was emitted hundreds of thousands of years later. Today over
90% of this matter is intergalactic hydrogen. Only a small fraction is in stars.

Dark matter contributes the remaining .27ρc to ρ. Astronomers agree that
dark matter exists and is five times as abundant as ordinary matter. Specu-
lations abound, but no one knows what it is. Since ordinary and dark matter
enter the field equations in the same way, via ρ in Eq. (4.14), they behave the
same gravitationally.

Dark matter is required to prevent galaxies from flying apart as they rotate;
there is insufficient ordinary matter to hold them together gravitationally. In
fact, galaxies would not have formed without dark matter. They formed from
the small density variations seen in the CMB. Any density variations of ordinary
matter in the early universe were smoothed out by interactions with intense elec-
tromagnetic radiation. Dark matter neither emits nor absorbs electromagnetic
radiation (hence its name). Thus variations within it could survive and grow
by gravitational attraction. Computer simulations of the formation and evolu-
tion of galaxies from the time of the CMB to today produce the distribution of
galaxies we see today – but only if they incorporate dark matter.
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The best direct evidence for the existence of dark matter comes from spec-
tacular observations on a vast scale: collisions of two galaxy clusters. About
100 million years ago, two clusters about 3.4 billion light years away collided
and passed through each other. The result is the bullet cluster, shown in Fig.
4.7.

Fig. 4.7: The bullet cluster. Fig. 4.8: A dark matter ring.

Intergalactic hydrogen gas and dark matter contribute most of the mass of
the clusters. (The galaxies themselves contribute only a small amount.) During
the collision, the gas in each cluster was slowed and heated by a drag force,
similar to air resistance. Dark matter should slow less than the gas, since
interacts with itself and ordinary matter only gravitationally. Thus the gas
should lag behind the dark matter.

Figure 4.7 shows this. The very hot gas emits X-rays, shown in (false color)
red. Dark matter is shown in blue. The distribution of this unseen matter was
inferred by gravitational lensing of background objects.

Fig. 4.9: The angular size-redshift
relation. Upper: Λ = 0; middle:
Λ/8πκ = .68ρc; lower: Λ/8πκ = ρc.

A much older (1–2 billion years old) and
farther away (5 billion light-years away) col-
lision of two galaxy clusters provides similar
evidence for dark matter. Unlike the bul-
let cluster collision, which we see from the
side, this collision was along our line of sight.
Dark matter “splashed” away from the col-
lision to form the ring seen in Fig. 4.8.
Again, the distribution of the unseen dark
matter was inferred by gravitational lensing
of background objects.
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Dark Energy. The first evidence for the existence of dark energy came
from observations of distant suprenovae made in the late 1990’s. All type Ia
supernovae have about the same peak intrinsic luminosity L. The luminosity-
redshift relation, derived in Appendix 16, expresses the observed luminosity `
of an object as a function of its intrinsic luminosity and redshift. The function
depends on Λ . Fig. 4.10 graphs log(`) vs. z for a fixed L and three values of
Λ .

Fig. 4.11 plots luminosity-redshift data for some supernovae with 0 ≤ z ≤ 1.
(The vertical line with each data point is an error bar.) The scale of the vertical
axis is chosen so the Λ/8πκ = .68ρc curve in Fig. 4.10 becomes the horizontal
line in Fig. 4.11. The Λ = 0 curve in Fig. 4.10 becomes the dotted curve in
Fig. 4.11. The data gives strong evidence for the existence of dark energy.

Fig. 4.10: The luminosity-redshift
relation. Upper: Λ = 0; middle:
Λ/8πκ = .68ρc; lower: Λ/8πκ = ρc.

Fig. 4.11: Supernova luminosity-
redshift data.

Exercise 4.4. Show that Λ ≈ 1.2× 10−35/sec2.

Independent evidence for dark energy comes from studies of galaxy clusters.
For most of the history of the universe, clusters have grown in size by gravita-
tional attraction. But with the increasing importance of the repulsive nature of
dark energy in recent times (see below), the growth has slowed. Measurements
of the growth of galaxy clusters out to z = .9 clearly show the effect of dark
energy, with a value consistent with that given above.

The effect of dark energy has been probed to greater distances using certain
very compact sources of radio frequency radiation. The angular size-redshift
relation, also derived in Appendix 16, expresses the angular size α of an object
as a function of its redshift. It is graphed in Fig. 4.9. These sources lie close to
the curve for Λ/8πκ = .68ρc, out to z = 3.

Independent lines of evidence for the existence and density of dark energy
come from the CMB, galaxy surveys, and gravitational lensing.
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Matter + Dark Energy. The densities of matter, ρ = .25ρc, and dark
energy, Λ/8πκ = .68ρc, add to ρc, as required by Eq. (4.16). Thus they are in
accord with our new field equation, Eq. (4.13).

The discovery of dark energy caused a sensation. It was a turning point for
cosmology. Science Magazine, one of the two premier science magazines in the
world, called it the ”Breakthrough of the Year” for 1998. Before the discovery,
the standard belief was that the universe is flat and that Λ = 0. Equation (4.16)
then requires that ρ = ρc. But enough matter to make this so was nowhere to
be found. With the discovery of dark energy, suddenly everything fit. The
standard cosmological model described in this chapter, whose parameters are
known within a percent or two, is the result.

The Expansion Accelerates. A quick calculation using Eq. (4.15) shows

that
(
SS ′ 2 − ΛS 3/3

)′
= 0. Thus from Eq. (4.14),

ρS 3 = constant. (4.18)

According to Eq. (4.18), ρ is inversely proportional to the cube of the scale
factor S. This is what we would expect. In contrast, the density of dark energy,
Λ/8πκ, is constant in time (and space). Thus the ratio of the dark energy
density to the matter density increases as the universe expands. At early times
matter dominates and at later times dark energy dominates. If we think of the
surface of our balloon as representing dark energy, then it doesn’t get thinner
as it expands.

Fig. 4.12: S (in units of S(to)) as
a function of t (in 109 years).

This has an important consequence for
the expansion of the universe. Solve Eq.
(4.14) for S′2 and substitute into Eq. (4.15),
giving S ′′ = S (Λ− 4πκρ)/3. At early times
ρ is large and so S ′′ < 0 ; the expansion
decelerates. This is no surprise: matter is
gravitationally attractive. At later times the
dark energy term dominates, and S ′′ > 0 ;
the expansion accelerates! This is a sur-
prise: dark energy is gravitationally repul-
sive.

According to the luminosity-redshift re-
lation, supernovae at z ≈ .5 are ∼30% dim-
mer than they would be if Λ were 0. They
are dimmer because their light has had to travel farther to get to us, as we
accelerate away from them. Supernovae from z = 1 to z ≈ 1.5 (the limit of the
data) show the opposite effect: they are brighter than they would be had the
expansion always been accelerating.

The changing rate of the expansion of the universe over its history is usu-
ally expressed as H(z). Major efforts are underway to measure H(z) at various
distances to see if it conforms to the predictions of general relativity with a
cosmological constant. Special attention is being given to determining the tran-
sition time from a decelerating to an accelerating expansion.
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The Expansion Factor S(t). We now solve the field equations (4.14) and
(4.15) for S(t) . Multiply Eq. (4.14) by −S 3 and use Eq. (4.18):

3SS ′ 2 − ΛS 3 = 8πκρoS
3(to) , (4.19)

where a “o” subscript means that the quantity is evaluated today. Solve:

S 3(t) =
ρo

Λ/8πκ
sinh2

(√
3Λ

2
t

)
S 3(to). (4.20)

Since the big bang is the origin of the universe, it is convenient to set t = 0
when S = 0. This convention eliminates a constant of integration in S. S(t) is
graphed in Fig. 4.12. As expected, the universe decelerates at early times and
accelerates at later times.

Exercise 4.5. Show that Eq. (4.20) is a solution to Eq. (4.19). Hint: Use
the square root of Eq. (4.20).

Exercise 4.6. Show that Eq. (4.20) implies that the age of the universe is
to = 13.4 billion years.

Exercise 4.7. Show that the universe will expand exponentially as t→∞.

Exercise 4.8. Show that the decelerating/accelerating transition of the
universe occurred at z ≈ .7. That is, the light we receive today from galaxies
at z = .8 was emitted at the time of the transition. That was about 7 billion
years ago. Observations have confirmed this within about 10%.

Exercise 4.9. Find the expression from which Fig. 4.4 is graphed.

Summary. Today’s standard cosmological model is based on general rela-
tivity with a cosmological constant: The universe had a big bang origin 13.8
billion years ago. (The Earth is 1/3 the age of the universe – 4.6 billion years
old.) The universe is spatially flat, expanding, and the expansion is accelerat-
ing. It consists of 5% known matter, 27% dark matter, and 68% dark energy.
Each of these numbers is supported by independent lines of evidence.

The construction of a model which fits the observations so well is a magnif-
icent achievement. But it crystallized only at the turn of the millennium, with
the discovery of the accelerating expansion. And we are left with two mysteries:
dark matter and dark energy. They constitute 96% of the “stuff” of the universe,
and we do not know what they are. We are in “a golden age of cosmology” in
which new cosmological data are pouring in. We must be prepared for changes,
even radical changes, in our model.
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Horizons. Light emitted at the big bang has only traveled a finite distance
since that time. Our particle horizon is the sphere from which we receive today
light emitted at the big bang. Galaxies beyond the particle horizon cannot be
seen by us today because their light has not had time to reach us since the
big bang! Conversely, galaxies beyond the particle horizon cannot see us today.
(Actually we can only see most of the way to the horizon, to the CMB.)

From Eqs. (4.8) and (4.4) with ds = 0 and k = 0, the distance to the particle
horizon today is

S(to)

∫ to

t=0

dt

S(t)
.

Exercise 4.10. Show that with S(t) from Eq. (4.20) this distance is ≈ 45
billion light years.

Actually, the distance to the horizon is somewhat uncertain, as it depends
on S(t) in the first moments after the big bang, for which Eq. (4.20) is not
accurate, and which is uncertain.

The distance today to the particle horizon of another time t1 is
S(to)

∫ t1
t=0

dt/S(t). Since the integral increases with t1, we can see, and can
be seen by, more galaxies with passing time. However, the integral converges as
t1 →∞ . Thus there are galaxies which will remain beyond the particle horizon
forever. The distance today to the most distant galaxies that we will ever see
is S(to)

∫∞
t=0

dt/S(t) ≈ 61 billion light years.
Light emitted today will travel only a finite coordinate distance as t → ∞.

Our event horizon is the sphere from which light emitted today reaches us as
t→∞. We will never see galaxies beyond the event horizon as they are today
because light emitted by them today will never reach us.

Exercise 4.11. Show that the distance to the event horizon today is
S(to)

∫∞
t=to

dt/S(t). This is ≈ 16 billion light years.

The table shows various redshifts z and distances d (in 109 lightyears) dis-
cussed in this section. They are related by the distance-redshift relation, derived
in Appendix 16. The S′′ = 0 column is the decelerating/accelerating transition.
The v = c column is where galaxies recede at the speed of light.

S′′ = 0 v = c
Min ∠

size
Event

horizon
CMB

Particle
horizon

Farthest
ever seen

z .78 1.5 1.6 1.8 1100 ∞ –
d 8.9 13.6 14.5 16 44 45?? 61
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4.5 General Relativity Today

General relativity extended the revolution in our ideas about space and time
begun by special relativity. Special relativity showed that space and time are
not absolute and independent, but related parts of a whole: spacetime. General
relativity showed that a spacetime containing matter is not flat and static,
but curved and dynamic, not only affecting matter (according to the geodesic
postulate), but also affected by matter (according to the field equation). In
consequence, Euclidean geometry, thought inviolate for over twenty centuries,
does not apply (exactly) in a gravitational field. The discussion of Robertson–
Walker spacetimes at the end of Sec. 4.2 illustrates these points particularly
clearly.

Despite its fundamental nature, general relativity was for half a century
after its discovery in 1915 out of the mainstream of physical theory because
its results were needed only for the explanation of the few minute effects in
the solar system described in Sec. 3.3. Newton’s theory of gravity accounted
for all other gravitational phenomena. But since 1960 astronomers have made
several spectacular discoveries: quasars, the CMB, neutron stars, the double
pulsar, gravitational lenses, the emission of gravitational radiation, black holes,
detailed structure in the CMB, and the accelerating expansion of the universe.
These discoveries have revealed a wonderfully varied, complex, and interesting
universe. They have enormously widened our “cosmic consciousness”. And we
need general relativity to help us understand them.

General relativity has passed every test to which it has been put: It reduces
to special relativity, an abundantly verified theory, in the absence of significant
gravitational fields. It reduces to Newton’s theory of gravity, an exceedingly
accurate theory, in weak gravity with small velocities. Sec. 2.2 cited experi-
mental evidence and logical coherence as reasons for accepting the postulates of
the theory. The theory explains the minute details of the motion of matter and
light in the solar system; the tests of the vacuum field equation described in Sec.
3.3 – the perihelion advance of Mercury, light deflection, and light delay – all
confirm the predictions of general relativity with an impressive accuracy. The
lunar laser experiment confirms tiny general relativistic effects on the motion
of the Earth and moon. Gravitomagnetism has been detected. The emission of
gravitational radiation from the double pulsar system provide quantitative con-
firmation of the full field equation. And the application of general relativity on
the grandest possible scale, to the universe as a whole, appears to be successful.

All this is very satisfying. But more tests of a fundamental theory are always
welcome. The difficulty in finding tests for general relativity is that gravity is
weak (about 10−40 as strong as electromagnetic forces), and so astronomical
sized masses over which an experimenter has no control must be used. Also,
Newton’s theory is already very accurate in most circumstances. Rapidly ad-
vancing technology has made, and will continue to make, more tests possible.

Foremost among these are attempts to detect gravitational waves. The hope
is that they will soon complement electromagnetic waves in providing informa-
tion about the universe. Sec. 3.5 described observations of the double pulsar
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which show indirectly that gravitational waves exist. The planning, construc-
tion, and commissioning of several gravitational wave detectors is under way.
The waves are extremely weak and so are difficult to detect. One detector is
able to measure changes in the distance between two test masses of 1/1000 of
the diameter of a proton! We await the first detection.

The most unsatisfactory feature of general relativity is its conception of mat-
ter. The density ρ in the energy-momentum tensor T represents a continuous
distribution of matter, entirely ignoring its atomic and subatomic structure.
Quantum theory describes this structure. The standard model is a quantum
theory of subatomic particles and forces. The theory, forged in the 1960’s and
1970’s, describes all known forms of matter, and the forces between them, except
gravity. The fundamental particles of the theory are quarks, leptons, and force
carriers. There are several kinds of each. Protons and neutrons consist of three
quarks. Electrons and neutrinos are leptons. Photons carry the electromagnetic
force.

The standard model has been spectacularly successful, correctly predict-
ing the results of all particle accelerator experiments (although many expect
discrepancies to appear soon). The theory of big bang nucleosynthesis uses the
standard model. However, the standard model leaves many matters unexplained
in cosmology. For example, dark matter and dark energy are beyond the scope
of the theory. We may be on the verge of detecting dark matter directly in
accelerator and other experiments.

Quantum theory and general relativity are the two fundamental theories
of contemporary physics. But they are separate theories; they have not been
unified. Thus they must be combined on an ad hoc basis when both gravity
and quantum effects are important. For example, in 1974 Steven Hawking
used quantum theoretical arguments to show that a black hole emits subatomic
particles and light. A black hole is not black! The effect is negligible for a black
hole with the mass of the Sun, but it would be important for very small black
holes – if they exist.

The unification of quantum theory and general relativity is the most impor-
tant goal of theoretical physics today. Despite decades of intense effort, the goal
has not been reached. String theory and loop quantum gravity are candidates for
a theory of quantum gravity, but they are very much works in progress. Success
is by no means assured.

The general theory of relativity is a necessary and formidable tool in our
quest for a deeper understanding of the universe in which we live. This and the
striking beauty and simplicity – both conceptually and mathematically – of the
unification of space, time, and gravity in the theory make general relativity one
of the finest creations of the human mind.
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Chapter A

Appendix

A.1. Physical Constants. When appropriate, the first number given uses
(light) seconds as the unit of distance.

c = 1 = 3.00× 1010 cm/sec = 186,000 mi/sec (Light speed)

κ = 2.47× 10−39sec/g = 6.67× 10−8 cm3/(g sec
2
)

(Newtonian gravitational constant)

g = 3.27× 10−8/sec = 981cm/sec
2

= 32.2 ft/sec
2

(Acceleration Earth gravity)

Mass Sun = 1.99× 1033 g

Radius Sun = 2.32 sec = 6.96× 1010 cm = 432,000 mi

Mean radius Mercury orbit = 1.9× 102 sec = 5.8× 1012 cm = 36,000,000 mi

Mercury perihelion distance = 1.53× 102 sec = 4.59× 1012 cm

Eccentricity Mercury orbit = .206

Period Mercury = 7.60× 106 sec = 88.0 day

Mean radius Earth orbit = 5× 102 sec = 1.5× 1013 cm = 93,000,000 mi

Mass Earth = 5.97× 1027 g

Radius Earth = 2.13× 10−2 sec = 6.38× 108 cm = 4000 mi

Angular momentum Earth = 1020 g sec = 1041 g cm2/sec

Ho = 2.3× 10−18/sec = (21 km/sec)/106 light year (Hubble constant)

A.2. Approximations. The approximations are valid for small x.

(1 + x)n ≈ 1 + nx
[

e.g., (1 + x)
1
2 ≈ 1 + x/2 and (1 + x)−1 ≈ 1− x

]
sin(x) ≈ x− x3/6

cos(x) ≈ 1
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A.3. Clock Synchronization. We show that clocks in an inertial frame
can be synchronized according to Einstein’s definition, Eq. (1.2). We will need
an auxiliary assumption.

Let 2T be the time, as measured by a clock at the origin O of the lattice, for
light to travel from O to another node Q and return after being reflected at Q.
According to Exercise 1.5, 2T is independent of the time the light is emitted.
Emit a pulse of light at O toward Q at time tO according to the clock at O.
When the pulse arrives at Q set the clock there to tQ = tO + T . According to
Eq. (1.3) the clocks at O and Q are now synchronized.

Synchronize all clocks with the one at O in this way.
To show that the clocks at any two nodes P and Q are now synchronized

with each other, we must make this assumption:

The time it takes light to traverse a triangle in the lattice is inde-
pendent of the direction taken around the triangle.

Fig. A.1: Light traversing a
triangle in opposite directions.

See Fig. A.1. In an experiment performed
in 1963, W. M. Macek and D. T. M. Davis, Jr.
verified the assumption for a square to one part
in 1012. See Appendix 4.

Reflect a pulse of light around the triangle
OPQ. Let the pulse be at O,P,Q,O at times
tO, tP , tQ, tR according to the clock at that node.
Similarly, let the times for a pulse sent around in
the other direction be t′O, t

′
Q, t

′
P , t

′
R. See Fig.

A.1. We have the algebraic identities

tR − tO = (tR − tP ) + (tP − tQ) + (tQ − tO)

t′R − t′O = (t′R − t′P ) + (t′P − t′Q) + (t′Q − t′O).

(A.1)

According to our assumption, the left sides of the
two equations are equal. Also, since the clock at O is synchronized with those
at P and Q,

tP − tO = t′R − t′P and tR − tQ = t′Q − t′O.

Thus, subtracting the equations Eq. (A.1) shows that the clocks at P and Q
are synchronized:

tQ − tP = t′P − t′Q .
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A.4. The Macek-Davis Experiment. In this experiment, light was
reflected in both directions around a ring laser, setting up a standing wave. A
fraction of the light in both directions was extracted by means of a half silvered
mirror and their frequencies compared. See Fig. A.2.

Fig. A.2: Comparing the round
trip speed of light in opposite direc-
tions.

Let t1 and t2 be the times it takes light to
go around in the two directions and f1 and
f2 be the corresponding frequencies. Then
t1f1 = t2f2, as both are equal to the number
of wavelengths in the standing wave. Thus
any fractional difference between t1 and t2
would be accompanied by an equal frac-
tional difference between f1 and f2. The fre-
quencies differed by no more than one part
in 1012.

(If the apparatus is rotating, say, clock-
wise, then the clockwise beam will have a
longer path, having to “catch up” to the
moving mirrors, and the frequencies of the beams will differ. The experiment
was performed to detect this effect.)
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A.5. Spacelike Separated Events. We show that if c = 1 in all inertial
frames, then the proper distance formula Eq. (1.12) holds.

Let E and F be spacelike separated events with coordinate differences
(∆t,∆x) in an inertial frame I. For convenience, let E have coordinates E(0, 0).
Then F has coordinates F (∆t,∆x). By definition, the spacelike separated
events E and F can be simultaneously at the ends of an inertial rigid rod –
simultaneously in the sense that light flashes emitted at E and F reach the
center of the rod simultaneously.

Exercise A.1. Show that E and F are simultaneous in an inertial frame
in which the rod is at rest.

Since the events are simultaneous in an inertial frame, they are neither light-
like separated (so |∆x| 6= |∆t|), nor timelike separated (so |∆x| ≮ |∆t|). Thus
|∆x| > |∆t| , i.e., |∆t/∆x| < 1 .

Fig. A.3: |∆s| = (∆x2 −∆t2)
1
2 for spacelike separated events E and F .

Fig. A.3 shows the worldline W ′ of an inertial observer O′ moving with
velocity v = ∆t/∆x (that is not a typo) in I. L± are the light worldlines
through F . Since c = 1 in I, the slope of L± is ±1. Solve simultaneously
the equations for L− and W ′ to obtain the coordinates R(∆x,∆t). (The time
coordinate is ∆x; the spatial coordinate is ∆t.) Similarly, the equations for L+
and W ′ give the coordinates S(−∆x,−∆t).

According to the time dilation formula Eq. (1.10), the proper time, as meas-

ured by O′, between S and E and between E and R is (∆x2−∆t2)
1
2 . Since the

times are equal, E and F are simultaneous in an inertial frame I ′ in which O′ is
at rest. Since c = 1 in I ′, the distance between E and F in I ′ is (∆x2 −∆t2)

1
2 .

This is the length of a rod at rest in I ′ with its ends simultaneously at E and F .
By definition, this is the proper distance |∆s| between the events. Eq. (1.12)
follows:

|∆s| = (∆x2 −∆t2)
1
2 = (1− (∆t/∆x)2)

1
2 |∆x| = (1− v2)

1
2 |∆x|.
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A.6. Moving Rods. If an inertial rod is pointing perpendicular to its
direction of motion in an inertial frame, then its length, as measured in the
inertial frame, is unchanged. If the rod is pointing parallel to its direction of
motion in the inertial frame, then its length, as measured in the inertial frame,
contracts. Why this difference? An answer can be given in terms of symmetry.

Consider identical rods R and R′, both inertial and in motion with respect
to each other. According to the inertial frame postulate, R and R′ are at rest
in inertial frames, say I and I ′.

Fig. A.4:
Rod perpen-
dicular to its
direction of
motion in I.

Perpendicular Case. First, situate the rods as in Fig. A.4.
Suppose also that the ends A and A′ coincide when the rods
cross. Then we can compare the lengths of the rods directly,
independently of any inertial frame, by observing the relative
positions of the ends B and B′ when the rods cross. Symmetry
demands that R and R′ have the same length. For if, say, B′

passed below B, then we would not have a symmetric situation:
a rod moving in I is shorter, while an identical rod moving in I ′

is longer.

Parallel Case. Now situate the rods as in Fig. A.5. Wait
until A and A′ coincide. Consider the relative positions of B
and B′ at the same time. But “at the same time” is different
in I and I ′! What happens is this: At the same time in I, B′

will not have reached B, so R′ is shorter than R in I. And at
the same time in I ′, B will have passed B′, so R is shorter than

R′ in I ′. This is length contraction. There is no violation of symmetry: in each
frame the moving rod is shorter.

Fig. A.5: Rod parallel to its direction
of motion in I.

Nor is there a contradiction here: the
lengths are compared differently in the
two inertial frames, each frame using the
synchronized clocks at rest in that frame.
Thus there is no reason for the two com-
parisons to agree. This is different from
Fig. A.4, where the lengths are com-
pared directly without clocks. Then there can be no disagreement over the
relative lengths of the rods.
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We now calculate the length contraction of R′ in I. Let L′ be the rest length
of R′ in I ′ and L be its length in I. A measurement of L′ requires only a ruler,
but a measurement of L also requires the synchronized clocks of I. For L is the
distance between the positions of A′ and B′ in I, the positions being taken at
the same time in I.

Emit a pulse of light from A′ toward B′. Let v be the speed of R′ in I. Since
c = 1 in I, the relative speed of the light and B′ in I is 1 − v. Thus in I the
light will take time L/(1− v) to reach B′. Similarly, if the pulse is reflected at
B′ back to A′, it will take time L/(1 + v) to reach A′. Thus the round trip time
in I is

∆x0 =
L

1− v
+

L

1 + v
=

2L

1− v2
.

According to Eq. (1.11), a clock at A′ will measure a total time

∆s =
(
1− v2

) 1
2 ∆x0

for the pulse to leave and return.
Since c = 1 in I ′ and since the light travels a distance 2L′ in I ′, ∆s is also

given by
∆s = 2L′.

Combine the last three equations to give L = (1 − v2)
1
2L′; the length L of

R′ in I is contracted by a factor (1− v2)
1
2 of its rest length L′.

The factor (1−v2)
1
2 appears in both the proper distance formula Eq. (1.12)

and the length contraction formula above. In both cases, a rod moving in I is
at rest in I ′. In both cases, events at which the ends of the rod are present
simultaneously are considered. Nevertheless, the cases are different: for proper
distance the events are simultaneous in I ′, whereas for length contraction the
events are simultaneous in I.

84



A.7. The Two Way Speed of Light. This appendix describes three
experiments which together show that the two way speed of light is the same in
different directions, at different times, and in different places.

The Michelson-Morley Experiment. Michelson and Morley compared
the two way speed of light in perpendicular directions. They used a Michel-
son interferometer that splits a beam of monochromatic light in perpendicular
directions by means of a half-silvered mirror. The beams reflect off mirrors
and return to the half-silvered mirror, where they reunite and proceed to an
observer. See Fig. A.6.

Fig. A.6: A Michelson interfer-
ometer.

Let 2T be the time for the light to traverse
an arm of the interferometer and return, D the
length of the arm, and c the two way speed of
light in the arm. Then by the definition of two
way speed, 2T = 2D/c. The difference in the
times for the two arms is 2D1/c1 − 2D2/c2. If
f is the frequency of the light, then the light in
the two arms will reunite

N = f

(
2D1

c1
− 2D2

c2

)
(A.2)

cycles out of phase.
If N is a whole number, the uniting beams

will constructively interfere and the observer
will see light; if N is a whole number + 1

2 , the uniting beams will destructively
interfere and the observer will not see light.

Rotating the interferometer 90◦ switches c1 and c2, giving a new phase dif-
ference

N ′ = f

(
2D1

c2
− 2D2

c1

)
.

As the interferometer rotates, light and dark will alternate N −N ′ times. Set
c2 − c1 = ∆c and use c1 ≈ c2 = c (say) to give

N −N ′ = 2f (D1 +D2)

(
1

c1
− 1

c2

)
≈ 2f

D1 +D2

c

∆c

c
. (A.3)

In Joos’ experiment, f = 6× 1014/sec, D1 = D2 = 2100 cm, and |N −N ′| <
10−3. From Eq. (A.3), ∣∣∣∣∆cc

∣∣∣∣ < 6× 10−12.
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The Brillit-Hall Experiment. In this experiment, the output of a laser
was reflected between two mirrors, setting up a standing wave. The frequency
of the laser was servostabilized to maintain the standing wave. This part of the
experiment was placed on a granite slab that was rotated. Fig. A.7 shows a
schematic diagram of the experiment.

Fig. A.7: The Brillit-Hall experiment.

Let 2T be the time for light to
travel from one of the mirrors to the
other and back, f be the frequency
of the light, and N be the number of
wavelengths in the standing wave.
The whole number N is held con-
stant by the servo. Then

Tf = N. (A.4)

But 2T = 2D/c, where D is the
distance between the mirrors and c
is the two way speed of light be-
tween the mirrors. Substitute this
into Eq. (A.4) to give Df = cN .

Thus any fractional change in c as the slab rotates would be accompanied by
an equal fractional change in f . The frequency was monitored by diverting a
portion of the light off the slab and comparing it with the output of a reference
laser which did not rotate. The fractional change in f was no more than four
parts in 1015.

As of 2009 the best result is that the speed of light in different directions
differs by less than 1 part in 1017.

The Kennedy-Thorndike Experiment. Kennedy and Thorndike used a
Michelson interferometer with arms of unequal length. Instead of rotating the
interferometer to observe changes in N in they observed the interference of the
uniting beams over the course of several months. Any change dc in the two way
speed of light (due, presumably, to a change in the Earth’s position or speed)
would result in a change dN in N : if we set, according to the result of the
Michelson-Morley experiment, c1 = c2 = c in Eq. (A.2), we obtain

dN = 2f
D1 −D2

c

dc

c
.

In the experiment, f = 6×1014/sec, D1−D2 = 16 cm, and |dN | < 3×10−3.
Thus |dc/c| < 6× 10−9.
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A.8. Newtonian Orbits. Let the Sun be at the origin of a coordinate
system. Let the vector r(t) describe the path of a planet. At every point r
define orthogonal unit vectors

Fig. A.8: The polar unit
vectors.

ur = cos θ i + sin θ j ,

uθ = − sin θ i + cos θ j .

See Fig. A.8. Differentiate r = rur to give the
velocity

v =
dr

dt
=
dr

dt
ur + r

dur
dθ

dθ

dt
=
dr

dt
ur + r

dθ

dt
uθ .

A second differentiation gives the acceleration

a =

[
d 2r

dt2
− r

(
dθ

dt

)2
]

ur +

[
r−1 d

(
r2 dθ/dt

)
dt

]
uθ .

Since the acceleration is radial, the coefficient of uθ is zero, i.e.,

r2 dθ

dt
= A , (A.5)

a constant. (This is Kepler’s law of areas, i.e., conservation of angular momen-
tum. Cf. Eq. (3.15).)

Using Eqs. (2.1) and (A.5), we have

a = −κM
r2

ur = −κM
A

dθ

dt
ur =

κM

A

duθ
dt

.

Integrate to obtain v and equate it to the expression for v above:

κM

A
(uθ + e) =

dr

dt
ur + r

dθ

dt
uθ ,

where the vector e is a constant of integration. Take the inner product of this
with uθ and use Eq. (A.5) again:

κM

A2
[1 + e cos (θ − θp)] =

1

r
, (A.6)

where e = |e| and θ−θp is the angle between uθ and e . This is the polar equation
of an ellipse with eccentricity e and perihelion (point of closest approach to the
Sun) at θ = θp.
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A.9. Geodesic Coordinates. By definition, the metric f(x) = (fmn(x))
of a local planar frame at P satisfies (fmn(P )) = f◦. Given a local planar frame
with coordinates x, we construct a new local planar frame with coordinates x̄ in
which the metric

(
f̄mn(x̄)

)
additionally satisfies ∂if̄mn(P ) = 0. The coordinates

are called geodesic coordinates.
We first express the derivatives of the metric in terms of the Christoffel

symbols by “inverting” the definition Eq. (2.17) of the latter in terms of the
former. Multiply Eq. (2.17) by (gji) and use the fact that (gjig

im) is the
identity matrix to obtain gjiΓ

i
kp = 1

2 (∂pgkj + ∂kgjp − ∂jgkp). Exchange j and k

to obtain gkiΓ
i
jp = 1

2 (∂pgjk + ∂jgkp − ∂kgjp). Add the two equations to obtain
the desired expression:

∂pgjk = gjiΓ
i
kp + gkiΓ

i
jp . (A.7)

Define new coordinates x̄ by

xm = x̄m − 1
2Γmstx̄

sx̄t ,

where the Christoffel symbols are those of the x-coordinates at P . Differentiate
this and use Γmit = Γmti :

∂xm

∂x̄j
=
∂x̄m

∂x̄j
− 1

2Γmsj x̄
s − 1

2Γmjt x̄
t = δmj − Γmsj x̄

s .

Substitute this into Eq. (2.9):

f̄jk(x̄) = fjk(x)− fjn(x)Γnskx̄
s − fmk(x)Γmsj x̄

s + 2 nd order terms.

This shows already that the x̄ are inertial frame coordinates: f̄(P ) = f(P ) = f0.
Differentiate the above equation with respect to x̄p, evaluate at P , and apply
Eq. (A.7) to f :

∂pf̄jk = ∂sfjk(P )
∂xs

∂x̄p
−
(
fjn(P )Γnpk + fmk(P )Γmpj

)
= ∂pfjk(P )−

(
fjn(P )Γnpk + fmk(P )Γmpj

)
= 0 .

Thus x̄ is a geodesic coordinate system.
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A.10. The Geodesic Equations. This appendix translates the local
form of the geodesic equations Eq. (2.16) to the global form Eq. (2.18). Let
(fjk) represent the metric with respect to a local planar frame at P with geodesic
coordinates (xi). Then from Eq. (2.6), (fjk(P )) = f◦. And from Eq. (2.19),
∂ifjk(P ) = 0.

Let (yi) be a global coordinate system with metric g(yi). We use the notation

yir =
∂yi

∂xr
, xuv =

∂xu

∂yv
, yirs =

∂2yi

∂xs∂xr
, xuvw =

∂2xu

∂yw∂yv
.

Differentiate ẏi = yiqẋ
q and use ẍq = 0, Eq. (2.16):

ÿi = yiqẍ
q + yiqrẋ

rẋq = yiqr(x
r
j ẏ
j)(xqkẏ

k) .

In terms of components, the formula g−1 = a−1 f◦−1
(
a−1

)t
from Exercise

2.6c is
gim = yirf

◦ rsyms .

Eq. (2.12) shows that Eq. (2.9) holds throughout the local planar frame, not
just at P. Apply ∂i to Eq. (2.9), and use Eq. (2.19) and the symmetry of f and
g. Evaluate at P :

∂igjk = (∂pfmn)xpi x
m
j x

n
k + fmnx

m
jix

n
k + fmnx

m
j x

n
ki = 2f◦mnx

m
j x

n
kj .

Note that (xumy
m
s ) = (∂xu/∂xs) is the identity matrix. Substitute the last two

displayed equations into the definition Eq. (2.17) of the Christoffel symbols:

Γijk = 1
2 g

im (∂kgjm + ∂jgmk − ∂mgjk)

= yirf
◦ rsyms

(
f◦uvx

u
j x

v
mk + f◦uvx

u
mx

v
kj − f◦uvxuj xvkm

)
= yirf

◦ rsyms f
◦
uvx

u
mx

v
kj

= yirf
◦ rsf◦uvx

u
my

m
s x

v
kj

= yirf
◦ rsf◦svx

v
kj

= yirx
r
kj .

Substitute for ÿi and Γijk from above to give the global form Eq. (2.18) of
the geodesic equations:

ÿi + Γijk ẏ
j ẏk =

(
yiqrx

q
kx

r
j + yirx

r
kj

)
ẏj ẏk = ∂k

(
yirx

r
j

)
ẏj ẏk = 0 .
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A.11. Tensors. Tensors are a generalization of vectors. (See Exercise A.3.)
The components ai of a vector are specified using one index. Many objects of
interest have components specified by more than one index. For example, the
metric gij and the Ricci tensor Rij have two. Another example is the Riemann
(curvature) tensor, which has four:

Rprsq = Γpts Γtrq − Γptq Γtrs + ∂sΓ
p
rq − ∂qΓprs . (A.8)

A superscript index is called contravariant ; a subscript index is called covariant.
A scalar is a tensor with a single component, i.e., it is a number, and so

requires no indices. A scalar has the same value in all coordinate systems.
There is a fully developed algebra and calculus of tensors. This formalism

is a powerful tool for computations in general relativity, but we do not need
it for a conceptual understanding of the theory. Nevertheless, we give a short
introduction here, for those who are curious.

As with a vector, we should think of a tensor as a single object, existing
independently of any coordinate system, but which in a given coordinate system
acquires components.

The components of a vector change under a rotation of coordinates. Sim-
ilarly, the components of a tensor change under a change of coordinates. The
formula for transforming the components from y to ȳ coordinates can be dis-
cerned from the example of the Riemann tensor:

R̄abcd = Rprsq
∂ȳa

∂yp
∂yr

∂ȳb
∂ys

∂ȳc
∂yq

∂ȳd
.

(A direct verification of this is extremely messy.) There is a derivative for each
index and the derivatives are different for upper and lower indices.

We adopt the transformation law as our definition of a tensor: “a tensor is
something which transforms as a tensor”. Eq. (2.12) shows that the metric is
a tensor. A scalar tensor has the same value in all coordinate systems. Not
all objects specified with indices form a tensor. For example, the Christoffel
symbols do not.

Our rather old-fashioned definition of a tensor is not very satisfactory, as
it gives no geometric insight into tensors. However, it is the best we can do
without getting into heavier mathematics.

Exercise A.2. Show that the coordinate differences (dyi) form a tensor.

Exercise A.3. This exercise shows that vectors in Rn are tensors. Fix a
point P and think of vectors v as extending from P as origin. Let (yi) be a global
coordinate system. Define a basis (dyj) at P by dyj = ∇yj |P . The vector dyj

is orthogonal to the surface yj = constant through P . Expand v with respect to
this basis: v = vj dy

j . Show that the vj transform as a covariant tensor. Hint:
Let (xi) be a rectangular coordinate system with orthonormal basis (ei). Then
dyj = (∂yj/∂xi) ei. Equate the ei coefficients of vj dy

j = v̄j dȳ
j . Multiply

both sides by ∂xi/∂ȳk.
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A superscript index p can be lowered to a subscript index t by multiplying
by gtp and summing. For example, Rtrsa = gtpR

p
rsa. Similarly, an index can

be raised using the inverse matrix (gpt) : Rprsa = gptRtrsa.

Exercise A.4. Show that lowering and raising a tensor index are inverse
operations. Use the example Rprsa above.

Exercise A.5. The matrix (gmn) is the inverse of the matrix (gjk). But
now gmn also denotes gjk with its indices raised. Prove that the two meanings
do not conflict.

Exercise A.6. a. Show that the indices on gmn are contravariant indices.
Hint: Write Eq. (2.12) as a matrix equation and invert it. C.f. Exercise 2.6.
b. Show that a raised covariant index is a contravariant index.

Lowering an index is a combination of two tensor operations: a tensor prod-
uct gtuR

p
rsa, followed by a contraction gtpR

p
rsa, formed by summing over a

repeated upper and lower index. The Ricci tensor, Eq. (2.25), is a contraction
of the Riemann tensor:

Rjk = Rpjkp.

Exercise A.7.a. Show that the product of two tensors is a tensor. Use the
example gtuR

p
rsa above.

b. Show that the contraction of a tensor is a tensor. Use the example gtpR
p
rsa

above.

We give only an example of the calculus of tensors. Consider the geodesic
equations Eq. (2.21). The derivatives (ẏi) are the components of a tensor.
The second derivatives (ÿi) are not. The Christoffel symbols on the left side
of the geodesic equations “correct” this: the quantities (ÿi + Γijk ẏ

j ẏk), are the

components of a tensor, the “correct” derivative of (ẏi). The right sides of
the geodesic equations are zero, the components of the zero tensor. Thus the
geodesic equations form a tensor equation, valid in all coordinate systems.
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A.12. Fermi Normal Coordinates. Recall from Appendix 9 that the
metric f of a geodesic coordinate system at E in spacetime satisfies (fmn(E)) =
f◦ and ∂ifmn(E) = 0. In spacetime, a Fermi normal coordinate system satisfies
in addition ∂0 ∂ifmn(E) = 0. We do not give a construction of these coordinates.

In Fermi normal coordinates the expansion of f to second order at E is

f00 = 1 − R0l0m x
lxm + . . .

f0i = 0 − 2
3R0lim x

lxm + . . . (A.9)

fij = −δij − 1
3Riljm x

lxm + . . . ,

where none of i, j, l, m is 0; the Riljm are components of the Riemann tensor,
Eq. (A.8), at E; and δij = 1 if i = j, 0 otherwise. Proof: The constant
terms in the expansion express (fmn(E)) = f◦. The linear terms vanish because
∂ifmn(E) = 0. The quadratic terms need not include l = 0 or m = 0 because
∂0 ∂ifmn(E) = 0. And a calculation (with a computer!) of the Riemann tensor
from the metric shows that the Riljm are components of that tensor. (Several
symmetries of the Riemann tensor facilitate the calculation:

Riljm = −Rilmj , Riljm = −Rlijm,
Riljm = Rimjl, Riljm +Rimlj +Rijml = 0.

The first two identities imply that Rilmm = 0 and Riijm = 0.)
A calculation of the Einstein tensor from the expansion Eq. (A.9) gives

G00 = R1212 +R2323 +R3131 . (A.10)

Eq. (2.23) gives the curvature K of a surface when g12 = 0. The general
formula is

K =
R1212

det(g)
. (A.11)

Now consider the surface formed by holding the time coordinate x0 and a
spatial coordinate, say x3, fixed, while varying the other two spatial coordinates,
x1 and x2. From Eq. (A.9) the surface has metric

fij = δij + 1
3Riljmx

lxm + . . . ,

where i, j, l,m vary over 1, 2. A calculation shows that the 1212 component
of the Riemann tensor for this metric is −R1212. (Remember that R is the
Riemann tensor for the spacetime, not the surface.) Thus from Eq. (A.11), the
curvature of the surface at the origin is

K12 =
−R1212

det(δij)
= −R1212. (A.12)

Putting together Eqs. (A.10) and (A.12),

G00 = −(K12 +K23 +K31) .
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A.13. The Form of the Field Equation. We give a plausibility argu-
ment, based on reasonable assumptions, which leads from the schematic field
equation Eq. (2.24) to Einstein’s field equation Eq. (2.28).

We take Eq. (2.24) to be a local equation, i.e., it equates the two quantities
event by event.

Consider first the right side of Eq. (2.24), “quantity determined by
mass/energy”. It is reasonable to involve the density of matter. In special
relativity there are two effects affecting the density of moving matter. First, the
mass of a body moving with speed v increases by a factor (1−v2)−

1
2 . According

to Eq. (1.11), this factor is dx0/ds. Second, from Appendix 6, an inertial body
contracts in its direction of motion by the same factor and does not contract in
directions perpendicular to its direction of motion. Thus the density of moving
matter is

T 00 = ρ
dx0

ds

dx0

ds
, (A.13)

where ρ is the density measured by an observer moving with the matter. As em-
phasized in Chapter 1, the coordinate difference dx0 has no physical significance
in and of itself. Thus Eq. (A.13) is only one component of a whole:

T jk = ρ
dxj

ds

dxk

ds
. (A.14)

This quantity represents matter in special relativity. A local inertial frame is in
many respects like an inertial frame in special relativity. Thus at the origin of
a local inertial frame we replace the right side of Eq. (2.24) with Eq. (A.14).
Transforming to global coordinates, the right side of Eq. (2.24) is the energy-
momentum tensor T. Thus the field equation is of the form

G = −8πκT, (A.15)

where according to Eq. (2.24) the left side is a “quantity determined by metric”.
We denote it G in anticipation that it will turn out to be the Einstein tensor.
And −8πκ was inserted for later convenience.

We shall make four assumptions which will uniquely determine G.
(i) From Eq. (2.24), G depends on g. Assume that the components of G,

like the curvature K of a surface, depend only on the components of g and their
first and second derivatives.

(ii) In special relativity ∂T jk/∂xj = 0. (For k = 0 this expresses conservation
of mass and for k = 1, 2, 3 it expresses conservation of the kth component of
momentum.) Assume that ∂T jk/∂xj = 0 at the origin of local inertial frames.

According to a mathematical theorem of Lovelock, our assumptions already
imply that Eq. (A.15) is of the form

A
[
R− 1

2 gR
]

+ Λg = −8πκT , (A.16)

where A and Λ are constants.
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It remains only to determine Λ and A.
(iii) Assume that a spacetime without matter is flat. (We will revisit this

assumption in Sec. 4.4.) In a flat spacetime the Christoffel symbols Eq. (2.17),
the Ricci tensor Eq. (2.25), and the curvature scalar R all vanish. Thus Eq.
(A.16) becomes Λg = 0. Therefore Λ = 0.

(iv) Assume that Einstein’s theory reduces to Newton’s when the latter is
accurate, namely when gravity is weak and velocities are small. We will show
that this implies that A = 1. Then Eq. (A.16) will be precisely the field equation
Eq. (2.28).

To show that A = 1, we use results from Chapter 4 with Λ = 0. Solve Eq.
(4.15) for S ′′ and use Eq. (4.14):

S ′′ = −4πκρS

3
. (A.17)

Consider a small ball centered at the origin. Using Eq. (4.5), the ball has
radius S(t)

∫
dσ = S(t)σ (σ is constant).

Now remove the matter from a thin spherical shell at radius S(t)σ. The
shell is so thin that the removal changes the metric in the shell negligibly. An
inspection of the derivation of the Schwartzschild metric in Section 3.2 shows
that metric in the shell is entirely determined by the total mass inside the shell.
In particular, we may remove the mass outside the shell without changing the
metric in the shell. Do so.

Apply the Newtonian equation Eq. (2.1) to an inertial particle in the shell:

S ′′σ = −κ
4
3π (Sσ)

3
ρ

(Sσ)
2 .

This is the same as Eq. (A.17); Einstein’s and Newton’s theories give the same
result.

But if A 6= 1 in Eq. (A.16), then the left side of Eq. (A.17) would be
multiplied by A. Thus the coincidence of the two theories in this situation
requires A = 1.
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A.14. Approximating an Integral. We approximate the integral, Eq.
(3.26). Retaining only first order terms in the small quantities m/r and m/rs
we have

(1− 2m/r)
−2

1− 1− 2m/r

1− 2m/rs
(rs/r)

2
≈ (1 + 2m/r)

2

1− (1− 2m/r) (1 + 2m/rs) (rs/r)
2

≈ 1 + 4m/r

1− (1− 2m/r + 2m/rs) (rs/r)
2

=
1 + 4m/r(

1− (rs/r)
2
)(

1− 2mrs
r (r + rs)

)
≈
(

1−
(rs
r

)2
)−1(

1 +
4m

r

)(
1 +

2mrs
r (r + rs)

)
≈
(

1−
(rs
r

)2
)−1(

1 +
4m

r
+

2mrs
r (r + rs)

)
.

We now see that Eq. (3.26) can be replaced with

t =

rs∫
re

(
1−

(rs
r

)2
)−1(

1 +
4m

r
+

2mrs
r (r + rs)

)
dr .

Integration gives

t =
(
r2
e − r2

s

) 1
2 + 2m ln

re +
(
r2
e − r2

s

) 1
2

rs
+m

(
re − rs
re + rs

)1
2

.

Use rs � re to obtain Eq. (3.27).
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A.15. The Robertson-Walker Metric. This appendix derives the
Robertson-Walker metric for an isotropic universe, Eq. (4.4). The field equation
is not used.

From Eq. (3.2) and Exercise 3.3 , the metric of a spherically symmetric
spacetime can be put in the form

ds2 = e2µdt2 − e2νdr2 − r2e2λdΩ 2, (A.18)

where the coefficients depend on R but not φ or θ. Since the universe expands,
the coefficients can also depend on t, unlike those in Eq. (3.2).

Since the coordinates are comoving, dr = dφ = dθ = 0 for neighboring events
on the worldline of a galaxy. Thus by Eq. (A.18), ds2 = e2µdt2. But ds = dt,
since both are the time between the events measured by a clock in the galaxy.
Thus e2µ = 1. Our metric is now of the form

ds2 = dt2 −
(
e2νdr2 − r2e2λdΩ 2

)
. (A.19)

If the universe is expanding isotropically about every galaxy, then it seems
that the spatial part of the metric could depend on t only through a common
factor S(t), as in the metric of our balloon, Eq. (4.2). We demonstrate this.

Consider light sent from a galaxy at (t, r, φ, θ) to a galaxy at (t + dt, r +
dr, φ, θ). From Eq. (A.19), dt2 = e2νdr2. Thus the light travel time between
P (r, φ, θ) and Q(r+dr, φ, θ) is eν(t,r)dr. The ratio of this time to that measured
at another time t′ is given by eν(t,r)/eν(t′,r). Similarly, the ratio of the times
between P and R(r, θ, φ+ dφ) is eλ(t,r)/eλ(t′,r). By isotropy at P the ratios are
equal:

eν(t,r)

eν(t′,r)
=

eλ(t,r)

eλ(t′,r)
. (A.20)

(For example, if the time from the galaxy at P to the nearby galaxy at Q doubles
from t to t′, then the time from P in another direction to the nearby galaxy at
R must also double.)

The two sides of Eq. (A.20) are independent of r. For if two r’s gave different
ratios, then there would not be isotropy half way between. Fix t′. Then both
members of Eq. (A.20) are a function only of t, say S(t). Set ν(t′, r) = ν(r) to
obtain eν(t,r) = S(t) eν(r). Similarly, eλ(t,r) = S(t) eλ(r). Thus the metric Eq.
(A.19) becomes

ds2 = dt2 − S 2(t)
(
e2νdr2 + r2e2λdΩ 2

)
. (A.21)

The coordinate change r̄ = reλ(r) puts Eq. (A.21) in the form

ds2 = dt2 − S 2(t)
(
e2νdr2 + r2dΩ 2

)
= dt2 − S 2(t) dσ2. (A.22)

We now determine ν in Eq. (A.22).

Exercise A.8. Show that an application of Eq. (2.23) shows that the
curvature K of the half plane θ = θ0 in the dσ portion of the metric satisfies
ν ′e−2ν = Kr.

As above, K is independent of r. Integrating thus gives e−2ν = C−Kr2, where
C is a constant of integration.
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Fig. A.9: Evaluating the in-
tegration constant C.

It only remains to determine C. From Eq.
(A.22) we can label the sides of an infinitesimal
sector of an infinitesimal circle centered at the ori-
gin in the φ = π/2 plane. See Fig. A.9. Since the
length of the subtended arc is the radius times the
subtended angle, eν(0) = 1. Thus C = 1.

Set k = 1, 0,−1 according as K > 0,K =
0,K < 0. Then k indicates the sign of the cur-

vature of space. If K 6= 0, substitute r̄ = r |K|
1
2

and S̄ = S |K|
1
2 . Dropping the bars, we obtain

ds2 = dt2 − S 2(t)

(
dr2

1− k r2
+ r2dΩ 2

)
(k = 0,±1).

The substitution r = r̄/(1 + kr̄2/4) gives the Robertson-Walker metric.
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A.16. Redshift Relations. This appendix relates three physical param-
eters of a distant object to its redshift. We obtain these relationships for a flat
universe (k = 0) with a cosmological constant Λ, as described in Sec. 4.4.

The Distance-Redshift Relation. The distance-redshift relation d(z)
expresses the distance d to a distant object today as a function of its redshift.

To obtain the relation, suppose that light is emitted toward us at event
(te, re) and received by us today at event (to, 0). Evaluate Eq. (4.14) at to, use
Eq. (4.9), and rearrange: 8πκρ(to) = 3H2

o − Λ. Thus from Eqs. (4.18) and
(4.11),

8πκρ(t) = 8πκρ(to)
S3(to)

S3(t)
= (3H2

o − Λ)(z + 1)3.

Thus Eq. (4.14) gives(
S ′

S

)2

=
8πκρ(t)

3
+

Λ

3
= H2

o

[
ΩΛ + (1− ΩΛ)(z + 1)3

]
, (A.23)

where ΩΛ ≡ Λ/3H2
o . (Using Eq. (4.17), Eq. (4.16) can be written ρ/ρc + ΩΛ =

1. Thus ΩΛ is the dark energy fraction of the matter-energy density of the
universe.)

For light emitted at time t and received by us at to, Eq. (4.11) can be written
S(to) = (z(t) + 1)S(t). Differentiate and substitute into Eq. (A.23):

(1 + z)−2

(
dz

dt

)2

= H2
o

[
ΩΛ + (1− ΩΛ)(z + 1)3

]
. (A.24)

From Eq. (4.10) with k = 0, dt = S(t)dr = S(to)(1+z)−1dr. And from Eqs.
(4.8) and (4.4) with ds = 0 and k = 0, d = S(to)re. Substitute these into Eq.
(A.24), separate variables, and integrate to give the distance-redshift relation:

d(z) = S(to)re = H−1
o

z∫
0

[
ΩΛ + (1− ΩΛ)(ζ + 1)3

]− 1
2 dζ . (A.25)
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The Angular Size-Redshift Relation. The angular size-redshift relation
α(z) expresses the angular size α of a distant object as a function of its redshift.

To obtain the relation, send a pulse of light from one side of the object to the
other. Let (te, re, θe, φe) and (te + dt, re, θe, φe + dφ) be the coordinates of the
emission and reception events. From Eq. (4.4), dt = reS(te) dφ. Since c = 1,
the size of the object D = dt. Also, α = dφ. Thus using Eq. (4.11),

α =
D

reS(te)
=

(z + 1)D

reS(to)
.

Substitute from the distance-redshift relation, Eq. (A.25), to obtain the angular
size-redshift relation:

α(z) =
(z + 1)HoD

z∫
0

[ΩΛ + (1− ΩΛ)(ζ + 1)3]
− 1

2 dζ

. (A.26)

This is graphed in Fig. 4.9.

The Luminosity-Redshift Relation. The luninosity-redshift relation
`(z) expresses the luminosity ` of light received from a distant object as a func-
tion of its redshift.

To obtain the relation, suppose that light of intrinsic luminosity L is emitted
toward us at event (te, re) and received by us at event (to, 0). Replace the
approximate relation ` = L/4πd 2 from Sec. 4.1 with this exact relation:

` =
L

4π(1 + z)2d 2
. (A.27)

The new 1 + z factors are most easily understood using the photon description
of light. The energy of a photon is E = hf (an equation discovered by Einstein),
where h is Planck’s constant. According to Eq. (1.7), the energy of each received
photon is diminished by a factor 1 + z. And according to Eq. (1.6), the rate at
which photons are received is diminished by the same factor.

Substitute d from the distance-redshift relation, Eq. (A.25), into Eq. (A.27)
to obtain the luninosity-redshift relation:

`(z) =
H2
oL

4π (1 + z)2

(
z∫
0

{ΩΛ + (1− ΩΛ)(ζ + 1)3}−
1
2 dζ

)2 . (A.28)

This is graphed in Fig. 4.10.
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