Equations

quations					
$^{\circ}\mathrm{C} = \frac{5}{9}(^{\circ}\mathrm{F} - 32)$	$K = ^{\circ}C + 273$	$T = \alpha m_W \bar{v}^2$	$T(z) = T_s - \frac{6.5}{1000}z$		
PE = mgz	$\mathrm{KE} = \frac{1}{2}mv^2$	$E = \sigma T^4$	$\rho(z) = \rho_s e^{-z/8000}$		
$\lambda_{max} = \frac{2897}{T}$	$\Delta Q = Cm\Delta T$	$\Delta Q = mL$	$P(z) = P_s e^{-z/8000}$		
$P = 2.87 \rho T$	$\frac{\Delta P}{\Delta z} = -\rho g$	$MR = \frac{m \text{ of } H_2O}{m \text{ of air}}$	$=T\left(\frac{1000}{P}\right)^{0.2859}$		
${}^{*}F_{pg} = \frac{1}{\rho} \frac{\Delta p}{\Delta d}$	${}^{*}F_{co} = 2\Omega v \sin \phi$	${}^*F_{cf} = \frac{v^2}{r}$	$T_e = T + \frac{L_v}{C_p} MR$		
$D = \frac{\Delta u}{\Delta x} + \frac{\Delta v}{\Delta y}$	$\zeta_r = \frac{\Delta v}{\Delta x} - \frac{\Delta u}{\Delta y}$	$T_v = \frac{T}{1 - \frac{e}{P} \left(1 - \epsilon\right)}$	$\theta_e = T_e \left(\frac{1000}{P}\right)^{0.2859}$		
m - mass	a - gravitational accel	γ — height	v = velocity		
T = tomporature	y = gravitational accel.	$\Delta O = change in one$	C = velocity		
P = pressure	a = density	$\Delta Q = \text{change in ene}$ F = force	$\alpha = \text{thermal constant}$		
Δd – change in location	p = density = change in location L = latent heat		r = radius of curvature		
$m_{\mu\nu}$ = molecular weight	T = surface temperature	$\varphi = \text{autual align}$ $\bar{v} = \text{average velocity}$	a = surface density		
$P_{\rm e} = {\rm surface \ pressure}$	$\Delta P = \text{change in pressure}$	$\Delta z = \text{change in height}$	ht $E = \text{irradiance}$		
$\theta = \text{potential temp.}$	tential temp. $MR = mixing ratio$		$\zeta_r = \text{relative vorticity}$		
PE = potential energy	KE = kinetic energy	$T_e = \text{eqivalent temp.}$	$\theta_e = \text{equiv. pot. temp.}$		
r		$T_v = $ virtual temp.	e = vapor pressure		

* - The forces F_{pg} , F_{co} , and F_{cf} are per one unit of mass.

General Constants

$\sigma = 5.67 \times 10^{-8} \text{ W}/(\text{m}^2 \text{ K}^4)$	$\Omega = 7.29 \times 10^{-5} \text{ radians/sec}$
C of dry air = 0.24 cal/(gram °C)	density of air (surface) = 1.22 kg/m^3
$g = 9.8 \text{ m/sec}^2$	Solar Constant = 1367 $\mathrm{W/m}^2$
$\alpha = 4.0\times 10^{-5} \; \mathrm{K} \; \mathrm{sec}^2/\mathrm{m}^2$	Earth radius = 6378 km

Water Related Constants

latent heat (L) of fusion = 80 cal/gram	latent heat (L) of evaporation = 600 cal/gram

density of liquid water $= 1 \text{ gram/cm}^3$ specific heat (C) of pure water = 1 cal/(gram °C)

specific heat (C) of ice = 0.50 cal/(gram °C)
$$\epsilon = \mathcal{R}_d/\mathcal{R}_v = 0.622$$

Conversions

$1 \mathrm{~m/sec}$	=	$2.22 \mathrm{\ mi/hr}$	$1 \mathrm{N}$	=	$1 \text{ kg} \cdot \text{m/sec}^2$	$1 \mathrm{knot}$	=	$1.15 \mathrm{~mi/hr}$
$1 \mathrm{kg}$	=	2.2 lb	$1 \mathrm{~mb}$	=	$100 \ \mathrm{N/m^2}$	1 J	=	$1 \text{ N} \cdot \text{m}$
$1 \mathrm{cal}$	=	4.186 J	$1 \mathrm{W}$	=	1 J/sec	1 Pa	=	$1 \; \mathrm{N/m}^2$
$1 \mathrm{m}$	=	3.28 ft	1 in	=	$2.54 \mathrm{~cm}$			