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Chapter 2.  The Layer Model

Summary

This is an algebraic calculation of the effect of an infrared absorber, a pane of
glass essentially, on the mean temperature of the surface of the earth.  By solving
the energy budgets of the earth’s surface and the pane of glass, the reader can see
how the pane of glass traps outgoing IR light, leading to a warming of the surface.
The layer model is not an accurate, detailed model suitable for a global warming
forecast, but the principal of the greenhouse effect cannot be understood without
understanding this model.

The Bare-Rock Layer Model

The temperature of the surface of the earth is controlled by the ways that energy
comes in from the sun and shines back out to space as infrared.  The sun shines a lot of
light, because the temperature at the visible surface of the sun is high and therefore the
energy flux I = ε σ T4 is a large number.  Sunlight strikes the earth and deposits some of
its energy into the form of vibrations and other bouncings-around of the molecules of the
earth.  Neither the earth nor the sun are perfect blackbodies, but they are both almost
blackbodies, as are most solids and liquids.  (Gases are terrible blackbodies, as we will
learn in the next chapter).  The earth radiates heat to space in the form of infrared light.
Earth light is much lower frequency and lower energy than sun light.

We are going to construct a simple model of the temperature of the earth.  The word
model is used quite a bit in scientific discussion, to mean a fairly wide variety of things.
Sometimes the word is synonymous with “theory” or “idea”, such as the Standard Model
of Particle Physics.  For doctors, a “model system” might be a mouse that has some
disease that resembles a disease that human patients get.  They can experiment on the
mouse rather than experimenting on people.  In climate science, models are used in two
different ways.  One way is to make forecasts.  For this purpose, a model should be as
realistic as possible, and should capture or include all of the processes that might be
relevant in nature.  This is typically a mathematical model implemented on a computer,
although there’s a nifty physical model of San Francisco Bay you should check out if
you’re ever in the neighborhood.  Once such a model has been constructed, a climate
scientist can perform what-if experiments on it that could never be done to the real world,
to determine how sensitive the climate would be to changes in the brightness of the sun or
properties of the atmosphere, for example.

The simple model that we are going to construct here is not intended for making
predictions, but is rather intended to be a toy system that we can learn from.  The model
will demonstrate how the greenhouse effect works by stripping away lots of other aspects
of the real world that would certainly be important for predicting climate change in the
next century or the weather next week, but make the climate system more complicated
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and therefore more difficult to understand.  The model we are going to explore is called
the layer model.  Understanding the layer model will not equip us to make detailed
forecasts of future climate, but one cannot understand the workings of the real climate
system without first understanding the layer model.

The layer model makes a few assumptions.  One is that the amount of energy coming
into the planet from sunlight is equal to the amount of energy leaving the earth as
infrared.  The real world may be out of energy balance for a little while or over some
region, but the layer model is always exactly in balance. We want to balance the energy
budget by requiring that the outgoing energy flux Fout must equal the incoming energy
flux,

Fin = Fout

Let’s begin with incoming sunlight.  The intensity of incoming sunlight Iin at the
average distance from the sun to the earth is about 1350 W / m2.  We’ll consider the
Watts part of this quantity first, then next the m2 part.  If you’ve ever seen Venus glowing
in the twilight sky you know that some of the incoming visible light shines back out again
as visible light.  Venus’ brightness is not blackbody radiation; it is hot on Venus but not
hot enough to shine white-hot.  This is reflected light.  When light is reflected, its energy
is not converted to vibrational energy of molecules in the earth and then re-radiated
according to the blackbody emission spectrum of the planet.  It just bounces back out to
space.  For the purposes of the layer model, it is as if the energy had never arrived on
earth at all.  The fraction of a planet’s incoming visible light that is reflected back to
space is called the planet’s albedo and is given the symbol α (greek letter alpha).  Snow,
ice, and clouds are very reflective, and tend to increase a planet’s albedo.  The albedo of
bright Venus is high, 70%, because of a thick layer of sulfuric-acid clouds in the
Venusian atmosphere, and low, 0.15, for Mars because of a lack of clouds on that planet.
Earth’s albedo of about 0.3 depends on cloudiness and sea ice cover, which might change
with changing climate.

Incoming solar energy that is not reflected is assumed to be absorbed into vibrational
energy of molecules of the earth.  Using a present-day Earthly albedo of 0.3, we can
calculate that the intensity of sunlight that is absorbed by the earth is 1350 W / m2. (1 – α)
= 1000 W / m2.

What about the area, the m2 on the bottom of that fraction?  If we want to get the total
incoming flux for the whole planet, in units of W instead of W/m2, we need to multiply
by a factor of area,

€ 

Fin W[ ] = I W
m2

 

  
 

  
⋅ A m2[ ]

What area shall we use?  Sun shines on half of the surface of the earth at any one
time, but the light is weak and wan on some parts of the earth, near dawn or dusk or in
high latitudes, but much more intense near the equator at noon.  The difference in
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intensity is caused by the angle of the incoming sunlight, not because the sunlight,
measured head-on at the top of the atmosphere, is much different between low and high
latitudes (Figure 2-1).  How then to add up all the weak fluxes and the strong fluxes on
the earth to find the total amount of energy that the earth is absorbing?

There’s a nifty trick.  Measure the size of the shadow.  The area we are looking for is
that of a circle, not a sphere.  The area is

€ 

A m2[ ] = π  rearth
2

Putting these together, the total incoming flux of energy to a planet by solar radiation is

€ 

Fin = π  rearth
2  1−α( )  Iin

Our first construction of the layer model will have no atmosphere, only a bare rock
sphere in space.  A real bare rock in space, such as the moon or Mercury, is incredibly
hot on the bright side and cold in the dark.  The differences are much more extreme than
they are on Earth or Venus where heat is carried by fluid atmospheres.  Nevertheless, we
are trying to find a single value for the temperature of the earth, to go along with a single
value for each of the heat fluxes Fin and Fout.  The real world is not all the same
temperature, but we’re going to ignore that in the layer model.  The heat fluxes Fin and
Fout may not balance each other in the real world, either, but they do in the layer model.

The rate at which the earth radiates energy to space is given by the Stefan-Boltzmann
equation,

€ 

Fout = A  ε  σ  Tearth
4

As we did for solar energy, we are here converting intensity I to total energy flux F by
multiplying by an area A.  What area is appropriate this time?  Incoming sunlight is
different from outgoing earthlight in that sunlight is all traveling in one direction,
whereas earthlight leaves earth in all directions (Figure 2-2).   Therefore the area over
which the earth radiates energy to space is simply the area of the sphere, which is given
by

€ 

Asphere = 4  π  rearth
2

Therefore the total outgoing energy flux from a planet by blackbody radiation is

€ 

Fout = 4  π  rearth
2  ε  σ  Tearth

4

The layer model assumes that the energy fluxes in and out balance each other

€ 

Fout = Fin
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which means that we can construct an equation from the “pieces” of Fout and Fin which
looks like this:

€ 

4  π  rearth
2  ε  σ  Tearth

4 = π  rearth
2  1−α( )  Iin

This equation tells us how the temperature of the earth ought to respond to factors such as
the intensity of sunlight and the albedo of the earth.

The first thing to notice is that a few terms appear in common on both sides of the
equation, which means that we can cancel them by dividing both sides of the equation by
those factors.  These are π and 

€ 

rearth
2 .  Before we toss these factors aside, however, we

need to stop for another general science education tangent break and talk about π.

Box: π and transcendental numbers

The number π is one of a very special type of numbers called transcendental
numbers.  The simplest numbers are counting numbers; 1,2,3, etc.  If we add
digits after the decimal place, such as 2.7 and 3.24, we get rational numbers.  A
rational number can run on forever, such as the decimal expression for the
fraction 1/9, which is 0.11111… with an infinite number of ones following the
decimal point.  They go on forever, but there is some repetition in the sequence of
digits, likes “ones forever” in this example.  Then there are the irrational
numbers, such as the square root of two 

€ 

2( ), which can be approximated as
1.41421356….  These numbers go on forever like the rational numbers may do,
but they never repeat.  Pythagoras thought that numbers like this were an
abomination, and their discovery was kept a closely guarded secret.  There is no
precise way to write the exact decimal value of 

€ 

2 , but we can get a handle on
the number using geometry.  In this case (and how Pythagoras came across 

€ 

2 ),
we can use the Pythagorean theorem to construct a line segment which is exactly

€ 

2  in length (Figure 2-3).

Finally, the most elusive and exalted of them all are the transcendental numbers
like π.  The decimal expression of π, 3.1415927… goes on forever as many
rational and all irrational numbers do.  The digits after the decimal never repeat,
like the irrational numbers.  Transcendental numbers differ from irrational
numbers is that there is no way using a compass and straightedge to construct a
straight line whose length is π.  Of course, it’s easy to construct a curved line of
length π by drawing a half of a circle using a compass, but that doesn’t count; we
are looking for a straight line.  This endeavor has been named “squaring the
circle” and has been the focus of much devotion among amateur mathematicians
and kooks over the centuries, along with perpetual motion machines and the
fountain of youth.   A resident of my home state of Indiana managed to convince
the Indiana State Legislature in 1897 that he had squared the circle to discover
that the true value for π.  He persuaded them to recognize the truth of his proof in



Chapter 2 6/13/05 5

state law, in exchange for allowing them to use his value of π without paying
royalties or license fees.  Hoosier generosity!

Before we move on, reflect for a moment that the number π is a transcendental
number, one of the most elusive of all numbers.  With modern computers we can
approximate π as closely as we wish, but we can never write the value of π
exactly.  The exact area of the shadow of the earth, π 

€ 

rearth
2 , will be forever out of

our reach, as will the exact area of the surface of the sphere, 4 π 

€ 

rearth
2 .  Yet we

can write the ratio of these two unreachable quantities, with the simple number 4.
Perhaps this is an indication that I don’t get out enough, but I find this beautifully
fascinating.

OK, end of tangent.  Time to do our first calculation of the temperature of the earth
(Figure 2-4).  Eliminating the factors of π 

€ 

rearth
2 , and dividing by 4 on both sides so that

we are left with units of Watts per area of the earth’s surface, we get

€ 

ε  σ  Tearth
4 =  1−α( )  Iin

4

We know everything here except the Tearth.  If we rearrange the equation to put what we
know on the right hand side, what we don’t on the left, we get

€ 

Tearth =
1−α( )  Iin
4  ε  σ

4 (4)

What we have constructed is a relationship between a number of crucial climate
quantities.  Changes in solar intensity such as the sunspot cycle or the Maunder Minimum
(Chapter 10) may affect Iin.  We shall see in the next chapter that greenhouse gases are
extremely selective about the wavelengths of light that they absorb and emit; in other
words they have complexities relating to their emissivity ε values.  The albedo of the
planet is very sensitive to ice and cloud cover, both of which might change with changing
climate.  All kinds of interesting possibilities.

If we calculate the temperature of the earth, we get a value of 255 K or about –15°C.
This is too cold; the temperature range of earth’s climate is –50° to about +35° C, but the
average temperature, what we’re calculating using the layer model, is closer to +15°C
than –15°C.  Table 2-1 gives the values we need to do the same calculation for Venus and
Mars, along with the results of the calculation and the observed average temperatures.  In
all three cases, our calculation has erred on the side of too cold.
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Table 2-1.  The temperatures and albedos of the terrestrial planets.

Isolar,
W/m2

α Tbare K Tobserved K T1 layer K

Venus 2600 71% 240 700 285

Earth 1350 33% 253 295 303

Mars 600 17% 216 240 259

The Layer Model With Greenhouse Effect

Our simple model is too cold because it lacks the greenhouse effect.  We had no
atmosphere on our planet; what we calculated was the temperature of a bare rock in
space, like the moon.  Of course the surface of the moon has a very different temperature
on the sunlit side than it does in the shade, but if the incoming sunlight were spread out
uniformly over the moon’s surface, or if somehow the heat from one side of the planet
conducted quickly to the other side, or if the planet rotated real fast, our calculation
would be pretty good.  But to get the temperature of the earth, Venus, and Mars, we need
a greenhouse effect.

In keeping with the philosophy of the layer model, the atmosphere in the layer model
is simple to the point of absurdity.  The atmosphere in the layer model resembles a pane
of glass suspended by magic above the ground Figure 2-5.  Like glass, our atmosphere is
transparent to visible light, so the incoming energy from the sun passes right through the
atmosphere and is deposited on the planet surface, as before.  The planet radiates energy
as IR light according to ε σ 

€ 

Tground
4 , as before.  In the IR range of light, we will assume

that the atmosphere, like a pane of glass, acts as a blackbody, able to absorb and emit all
frequencies of IR light.  Therefore the energy flowing upward from the ground, in units
of W/m2 of the earth’s surface, which we will call Iup, ground, is entirely absorbed by the
atmospheric pane of glass.  The atmosphere in turn radiates energy according to ε σ

€ 

Tatmosphere
4 . Because the pane of glass has two sides, a top side and a bottom side, it radiates

energy both upward and downward, Iup, atmosphere and Idown, atmosphere.

The layer model assumes that the energy budget is in steady state; energy in = energy
out.  This is true for any piece of the model, such as the atmosphere, just as it is for the
planet as a whole.  Therefore we can write an energy budget for the atmosphere, in
units of Watts per area of the earth’s surface, as

Iup, atmosphere + Idown, atmosphere = Iup, ground
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or

€ 

2  ε  σ  Tatmosphere
4 = ε  σ  Tground

4

The budget for the ground is different from before, because we now have heat
flowing down from the atmosphere.  The basic balance is

Iout = Iin

We can break these down into component fluxes

Iup, ground = Iin, solar + Idown, atmosphere

and then further dissect them into

€ 

ε  σ  Tground
4 =

1−α( )
4

Isolar + ε  σ  Tatmosphere
4

Finally, we can also write a budget for the earth overall by drawing a boundary
above the atmosphere and figuring that if energy gets across this line in, it must also be
flowing across the line out at the same rate.

Iup, atmosphere = Iin, solar

The intensities are comprised of individual fluxes from the sun and from the atmosphere

€ 

ε  σ  Tatmosphere
4 =

1−α( )
4

Isolar

There is a solution to the layer model, for which all the budgets balance.  We are
looking for a pair of temperatures Tground and Tatmosphere.  Solving for Tground and Tatmosphere is a
somewhat more complex problem algebraically than the bare-rock model with no
atmosphere we solved above, but we can do it.  We have two unknowns, but we appear to
have three equations, the budgets for the atmosphere, for the ground, and for the earth
overall.  According to the rules of linear algebra, we can solve a problem if we have the
same number of independent constraints (equations) as we have unknowns.  If we have
more constraints than unknowns, there might not be a solution.  Can’t get there from
here.  In our case, any two of the equations will suffice to pin down the two unknowns,
and any third turns out to be just a combination of the other two.  The budget equation for
the earth overall, for example, is just the sum of the budget equations for the ground and
the atmosphere (verify this for yourself).  Therefore the third equation contains no new
information that wasn’t already contained in the first two, and we have a perfectly well-
posed algebraic system, where the number of unknowns in just balanced by the number
of independent constraints or equations.

So we are free to  use any two of the three budget equations to solve for the
unknowns Tground and Tatmosphere.  There are laborious ways to approach this problem, and
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there is an easy way.  Shall we choose the easy way?  OK.  The easy way is to begin with
the energy budget for the earth overall.  This equation contains only one unknown,
Tatmosphere.  Come to think of it, this equation looks a lot like equation 4, describing the
surface temperature of the bare planet model above.  If we solve for Tatmosphere here, we get
the same answer as when we solved for Tbare earth.  This is an important point, more than
just a curiosity or an algebraic convenience.  It tells us that the place in the earth system
where the temperature is the most directly controlled by the rate of incoming solar energy
is the temperature at the location that radiates to space.  We will call this temperature the
skin temperature of the earth.

What about temperatures below the skin, in this case Tground?  Now that we know that
the outermost temperature, Tatmosphere, is equal to the skin temperature, we can plug that
into the budget equation for the atmosphere to see that

€ 

2  ε  σ  Tatmosphere
4 = ε  σ  Tground

4

or

€ 

Tground = 24  Tatmosphere

The temperature of the ground must be warmer than the skin temperature, by a factor
of the fourth root of two, an irrational but not transcendental number that equals about
1.189.  The ground is warmer than the atmosphere by about 19%.  When we do the
calculation Tground for Venus, Earth, and Mars in Table 1, we see that we are getting Earth
about right, Mars too warm, and Venus not yet warm enough.

The blackbody atmospheric layer is not a source of energy, like some humungous
heat lamp in the sky.  How then does it change the temperature of the ground?  I am
going to share with you what is perhaps my favorite earth-sciences analogy, that of the
equilibrium water level in a steadily filled and continuously draining sink.  Water flowing
into the sink, residing the in the sink for a while, and draining away is analogous to
energy flowing into and out of the planet.  Water drains faster as the level in the sink
rises, as the pressure from the column of water pushes water down the drain.  This is
analogous to energy flowing away faster as the temperature of the planet increases,
according to ε σ T4.  Eventually the water in the sink reaches a level where the outflow of
water balances the inflow.  That’s the equilibrium value, and is analogous to the
equilibrium temperature we calculated for the layer model.  We constrict the drain
somewhat but putting a penny down on the filter.  For a while, the water drains out more
slowly, and the water level in the sink rises because the water budget imbalance.  The
water level rises until the higher water level pushes water down the drain fast enough to
balance the faucet again.  A greenhouse gas, like the penny in the drain filter, makes it
more difficult for the heat to escape the earth.  The temperature of the earth rises until the
fluxes balance again.
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Take-Home Points

The outflow of IR energy from a planet must balance heating from the sun.

The planet accomplishes this act of energetic housekeeping by adjusting its
temperature.

Absorption of outgoing IR light by the atmosphere warms the surface of the planet, as
the planet strives to balance its energy budget.

Lab

1.  The moon with no heat transport.  The layer model assumes that the temperature of
the body in space is all the same. This isn't really very accurate, as you know that it's
colder at the poles than it is at the equator. For a bare rock with no atmosphere or ocean,
like the moon, the situation is even worse, because fluids like air and water are how heat
is carried around on the planet. So let's make the other extreme assumption, that there is
no heat transport on a bare rock like the moon. What is the equilibrium temperature of the
surface of the moon, on the equator, at local noon, when the sun is directly overhead?
What is the equilibrium temperature on the dark side of the moon?

2.  A two-layer model.  Insert another atmospheric layer into the model, just like the first
one.  The layer is transparent to visible light but a blackbody for infrared.

a) Write the energy budgets for both atmospheric layers, for the ground, and for the earth
as a whole, just like we did for the one-layer model.

b) Manipulate the budget for the earth as a whole to obtain the temperature T2 of the top
atmospheric layer, labeled Atmospheric Layer 2 in Figure 2-6.  Does this part of the
exercise seem familiar in any way?  Does the term skin temperature ring any bells?

c) Insert the value you found for T2 into the energy budget for layer 2, and solve for the
temperature of layer 1 in terms of layer 2.  How much bigger is T1 than T2?

d) Now insert the value you found for T1 into the budget for atmospheric layer 1, to
obtain the temperature of the ground, Tground.  Is the greenhouse effect stronger or weaker
because of the second layer?

3.  Nuclear Winter.  Let’s go back to the 1-layer model, but let’s change it so that the
atmospheric layer absorbs visible light rather than allowing to pass through (Figure 2-7).
This could happen if the upper atmosphere were filled with dust.  For simplicity, let’s
assume that the albedo of the earth remains the same, even though in the real world it
might change with a dusty atmosphere.  What is the temperature of the ground in this
case?
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