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I. Introduction. Stokes’ theorem on a manifold is a central theorem of
mathematics. Special cases include the integral theorems of vector analysis and
the Cauchy-Goursat theorem. My purpose here is to prove this version of

Stokes’ Theorem. Let ω be a continuous differential (n − 1)-form on a
compact oriented n-manifold M with boundary ∂M . Suppose that ω is differen-
tiable on M − ∂M and dω is Lebesgue integrable there. Then∫

M

dω =

∫
∂M

ω. (1)

(ω is differentiable if its coefficient functions are differentiable.)
The recent development of multidimensional generalized Riemann integrals

(see §II-D) makes it possible to prove strong versions of Stokes’ theorem. Our
version is a special case of a theorem of Pfeffer [22, Corollary 7.4 ], who uses his
BV generalized Riemann integral. Unfortunately, his proof is quite involved.

The statement of the theorem and its proof here have several notable fea-
tures. We describe them briefly and then elaborate in §II.

A. The theorem requires only Lebesgue integrability of dω. Most versions of
Stokes’ theorem require that dω be continuous.

B. The theorem requires dω to exist only on M − ∂M . Most versions of
Stokes’ theorem require dω to exist on all of M .

C. The proof uses the integral definition of dω. The integral definition of dω
gives it a simple geometric meaning. The definition makes possible a simple and
intuitive one line heuristic demonstration of Stokes’ theorem on a cube, which
shows us the reason for the theorem.
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D. The proof uses the Mawhin generalized Riemann integral. This integral
fits hand in glove with the integral definition of dω to turn the heuristic demon-
stration of Stokes’ theorem on a cube into a simple and intuitive proof on a
cube.

Our proof of Stokes’ theorem on a manifold proceeds in the usual two steps.
First we prove the theorem for a cube. Here the proof is new and self contained.
The statement and proof use the integral definition of dω and the Mawhin
integral. Then we lift the theorem from a cube to a manifold. Here we have
nothing new to offer, but we give an outline of a standard proof for completeness.
Along the way we must relate the integral definition of dω to the usual definition
using partial derivatives (see §V) and relate the Mawhin integral to the Lebesgue
integral (see §VI). These more technical sections are the price we pay for features
(A) – (D).

II. (A) – (D) Elaborated. A. The theorem requires only Lebesgue inte-
grability of dω. Traditional proofs of Stokes’ theorem, from those of Green’s
theorem on a rectangle to those of Stokes’ theorem on a manifold, elementary
and sophisticated alike, require that ω ∈ C1. See for example de Rham [5, p.
27 ], Grunsky [8, p. 97 ], Nevanlinna [19, p. 131 ], and Rudin [26, p. 272 ].

Stokes’ theorem is a generalization of the fundamental theorem of calculus.
Requiring ω ∈ C1 in Stokes’ theorem corresponds to requiring f ′ to be contin-
uous in the fundamental theorem of calculus. But an elementary proof of the
fundamental theorem requires only that f ′ exist and be Riemann integrable on
(a, b) (and that f be continuous on [a, b]): Let a = x0 < . . . < xj < . . . < xn = b.
Then using a telescoping series and the mean value theorem,

f(b)− f(a) =

n∑
j=1

{f(xj)− f(xj−1)} =

n∑
j=1

f ′(cj)(xj − xj−1) →
∫ b

a

f ′. (2)

In fact, f ′ need only be Lebesgue integrable [25, Th. 8.21 ]. It is satisfying
to have a version of Stokes’ theorem which, like the fundamental theorem of
calculus it generalizes, requires only Lebesgue integrability of the derivative.

We note that Acker’s recent version of Stokes’ theorem requires only that
dω be Riemann integrable [1]. This paper is well worth reading.

Standard versions of Green’s theorem imply Cauchy’s theorem: If f is ana-
lytic with a continuous derivative in an open set containing a simple closed curve
C and its interior, then

∫
C
f(z)dz = 0. Our Stokes’ theorem (and Acker’s)

specialize to a version of Green’s theorem which implies the Cauchy-Goursat
theorem: If f is analytic in an open set containing a simple closed curve C and
its interior, then

∫
C
f(z)dz = 0. As Acker points out, this counters the usual

view that the Cauchy-Goursat theorem is not a corollary of Green’s theorem
and so requires a special proof.

Our Stokes’ theorem immediately yields Cauchy-Goursat’s theorem on a
manifold: Let ω be an (n − 1)-form continuous on M and differentiable on
M−∂M . Suppose that dω ≡ 0 on M−∂M . Then

∫
∂M

ω = 0. Using traditional
versions of Stokes’ theorem we would also need the hypothesis ω ∈ C1. This is
the blemish Goursat’s theorem removes from Cauchy’s theorem.
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B. The theorem requires dω to exist only on M − ∂M . As seen above, the
fundamental theorem of calculus requires f ′ to exist only on the open interval
(a, b). Again the situation with respect to Stokes’ theorem is different: the
references [5], [8], [19], and [26] cited above all require dω to exist on all of M .

Since dω need not exist on ∂M , in the Cauchy-Goursat theorem we need
only assume that f is continuous on C and its interior, and analytic in the
interior. This result can also be found in [13, Th. 3.10 ].

C. The proof uses the integral definition of dω. Let ω be an (n− 1)-form on
Rn. Fix x ∈ Rn. Let c denote an n-cube (of arbitrary orientation) with x ∈ c.
Define

dω(x) = lim
x∈c

diam(c)→0

1

|c |

∫
∂c

ω . (3)

(By a slight abuse of notation we identify the n-form dω with its (single) coef-
ficient function dω(x): dω = dω(x) dx1 ∧ . . . ∧ dxn.)

This integral definition gives dω a clear geometric meaning.
The integral definition tells us the reason for Stokes’ theorem. To see this,

partition [ 0, 1]
n
with small cubes {cj} and let xj ∈ cj . Then if dω is Riemann

integrable, ∫
∂[0,1]n

ω =
∑
j

∫
∂cj

ω ≈
∑
j

dω(xj) |cj | →
∫

[0,1]n

dω . (4)

Note the step-by-step parallel between this heuristic argument and the proof of
the fundamental theorem of calculus, Eq. (2).

The integral definition is essential in turning the heuristic argument into our
proof of Stokes’ theorem on a cube in §IV.

The integral definition does not refer to any coordinate system. In particular,
dω is invariant under a rotation of coordinates. In contrast, the usual derivative
definition of dω is given in terms of partial derivatives with respect to some
coordinate system. It must then be proved that dω is invariant under a rotation
of coordinates.

In §V we show that if ω is differentiable, i.e., its coefficient functions are
linearly approximable, then dω exists and the integral definition is equivalent
to the derivative definition.

One might say that the integral definition tells us what dω is, whereas the
derivative definition tells us how to compute dω.

For all these reasons, I prefer the integral definition of dω to the derivative
definition.

We can use the heuristic argument, Eq. (4), on a compact manifold with
boundary M in Rn by “nearly” covering M with small “nearly” cubes. In
this way, the divergence and Stokes’ theorems of vector calculus can be made
plausible.
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The integral definition of dω and the heuristic demonstration of Stokes’
theorem are used in many physics oriented texts, e.g., [2, p. 188 ], [24, p.
10 ], [27, Sec. 5.8 ], and [30, pp. 83, 93 ]. They should be better known to
mathematicians.

The definition and demonstration are used in the Harvard multivariable cal-
culus text for the divergence theorem [9]. A teacher of multivariable calculus can
be more comfortable with this approach knowing that it can be made rigorous.

D. The proof uses the Mawhin generalized Riemann integral. The first gen-
eralized Riemann integral was the Henstock-Kurzweil integral in R1 [10] [12].
Bartle has given an excellent elementary account of this integral [3].

The HK integral solves a problem in formulating the fundamental theorem
of calculus: a derivative need not be Riemann, or even Lebesgue, integrable.
A standard example is the function f(x) = x2 cos(π/x2) for x ∈ (0, 1], with
f(0) = 0. The derivative f ′ exists on [ 0, 1]. But f is not absolutely continuous
on [ 0, 1], and so f ′ is not Lebesgue integrable there. Among the impressive
features of the HK integral is its formulation of the fundamental theorem:

If f ′ exists on [a, b], then f ′ is HK-integrable on [a, b] and

(HK)

∫ b

a

f ′(x)dx = f(b)− f(a). (5)

Equally impressive is the trivial proof of the theorem. All this even though f ′

need not be Lebesgue integrable. Moreover, the HK integral is super Lebesgue:
If f is Lebesgue integrable, then it is HK integrable to the same value.

The HK integral in Rn is also super Lebesgue, but it does not always in-
tegrate dω, even if ω is differentiable [21, Example 5.7 ]. Mawhin designed his
integral to overcome this deficiency [14, Theorem 2 ]. He proves this version of

Stokes’ Theorem on a Cube. Let ω be a differential (n−1)-form defined
on an open set U ⊇ [ 0, 1]

n
. If dω exists on [ 0, 1]

n
, then dω is Mawhin integrable

on [ 0, 1]
n
and

(M)

∫
[0,1]n

dω =

∫
∂[0,1]n

ω . (6)

Mawhin’s proof uses his integral, but not the integral definition of dω. Acker
proves his result using the integral definition, but not the Mawhin integral [1].
We give a proof of Eq. (6) in §IV which uses both; this provides a more general
theorem than Acker’s with a simpler and more intuitive proof than Mawhin’s.

According to the theorem, the Mawhin integral always integrates dω. In
addition, we shall show in §VI that the integral is super Lebesgue. Why, then,
don’t we abandon the Lebesgue integral in favor of the Mawhin integral? Most
important for us, the change of variable theorem fails [22, p. 143 ], and so the
integral cannot be lifted to manifolds. Fubini’s theorem also fails [21, Remark
5.8 ]. And there are other deficiencies [21, Remark 7.3 ]. We use the Mawhin
integral only as a catalyst to compute the Lebesgue integral on the left side of
Eq. (1).
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Pfeffer’s BV integral can be lifted to manifolds. His version of Stokes’ theo-
rem is stated in terms of this integral: Under the hypotheses of our theorem, dω
is BV integrable and (BV)

∫
M

dω =
∫
∂M

ω [22, Corollary 7.4 ]. Moreover, ω can
be discontinuous on a “small” set [22, Theorem 7.3 ]. This is a strong result.
But the BV integral is more complicated than the Mawhin integral, it does not
fit well with the integral definition of dω, and the proof of Stokes’ theorem is
much more complicated than ours.

Unlike R1, where the HK integral seems to be completely satisfactory, none
of the several generalized Riemann integrals in higher dimensions has enough
desirable properties to make it a useful general purpose integral. Thus current
versions of Stokes’ theorem stated in terms of a generalized Riemann integral
(e.g., [11], [15], [20], [22], [23]) cannot serve as a general purpose Stokes’ theorem.

III. The Mawhin integral. We now give a series of definitions leading
to the Mawhin integral [14] [15], specialized to [ 0, 1]

n
. (Mawhin calls it the

RP – regular partition – integral.) For motivation and discussion of generalized
Riemann integrals, see [3] and [16]. The definition of the Mawhin integral be-
comes that of the Riemann integral if the function δ(x) below is replaced with a
constant δ and the cubes cj with rectangles. We will see the definition in action
in §4 and in §6.

A gauge on [ 0, 1]
n
is a positive function δ(x) on [ 0, 1]

n
.

A tagged regular partition {cj , xj}kj=1 of [ 0, 1]
n
is a decomposition of [ 0, 1]

n

into closed subcubes {cj} together with points xj ∈ cj . The cj are disjoint
except for boundaries.

Let δ be a gauge on [ 0, 1]
n
. A tagged regular partition {cj , xj}kj=1 is δ-fine

if diam(cj) ≤ δ(xj), j = 1 . . . k.
Let dω be an n-form defined on [ 0, 1]

n
. A number, denoted (M)

∫
[0,1]n

dω,

is the Mawhin integral of dω over [ 0, 1]
n
if, given ε > 0, there is a gauge δ on

[ 0, 1]
n
so that for every δ-fine tagged regular partition {cj , xj} of [ 0, 1]

n
,∣∣∣∣∣∣ (M)

∫
[0,1]n

dω −
k∑

j=1

dω(xj) | cj |

∣∣∣∣∣∣ ≤ ε. (7)

If this definition is to make sense, we need to prove two things:
(i) Given a gauge δ on [ 0, 1]

n
, there is a δ-fine tagged regular partition of

[ 0, 1]
n
. (Cousin’s lemma) To see this, first note that if a cube c is partitioned into

subcubes, each of which has a δ-fine regular partition, then c has a δ-fine regular
partition. Thus if [ 0, 1]

n
has no δ-fine regular partition, then there is a sequence

[ 0, 1]
n ⊃ c1 ⊃ c2 ⊃ . . . of compact cubes with no δ-fine regular partition and

diam (ci) → 0. Let {x} =
⋂

i ci. Choose j so that diam (cj) ≤ δ(x). Then
{(cj , x)} is a δ-fine regular partition of cj , which is a contradiction.

(It is interesting to note that the standard proof of the Cauchy-Goursat the-
orem and Acker’s proof of Stokes’ theorem use similar compactness arguments.)

(ii) If the Mawhin integral exists, then it is unique. For if δ1 and δ2 are
gauges and δ = Min(δ1, δ2), then a δ-fine regular partition is also δ1-fine and
δ2-fine.
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The use of tagged partitions is not limited to integration theory: Gordon
has used them to prove many theorems of elementary real analysis [6].

IV. Proof of Stokes’ theorem. We first prove the theorem on a cube,
Eq. (6). Given ε > 0, define a gauge δ(x) > 0 on [ 0, 1]

n
as follows. Choose

x ∈ [ 0, 1]
n
. Then according to the integral definition of dω, Eq. (3), there is a

δ(x) > 0 so that if x ∈ c, a cube with diam(c) ≤ δ(x), then
∣∣ ∫

∂c
ω − dω(x) |c |

∣∣ <
ε|c |. Now let {cj , xj} be a δ-fine tagged regular partition of [ 0, 1]

n
. Then∣∣∣∣∣∣∣

∫
∂[0,1]n

ω −
∑
j

dω(xj) |cj |

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣
∑
j

∫
∂cj

ω −
∑
j

dω(xj) |cj |

∣∣∣∣∣∣∣ <
∑
j

ε |cj | = ε.

By the definition of the Mawhin integral, Eq. (7), (M)
∫
[0,1]n

dω exists and

is equal to
∫
∂[0,1]n

ω. 2

As stated in §1, “The Mawhin integral fits hand in glove with the integral
definition of dω to turn the heuristic demonstration of Stokes’ on a cube [Eq.
(4)] into a simple and intuitive proof.”

Corollary. Let ω be a continuous differential (n− 1)-form on [ 0, 1]
n
. Sup-

pose that dω exists on (0, 1)n and is Lebesgue integrable there. Then∫
[0,1]n

dω =

∫
∂[0,1]n

ω. (8)

Proof. Let ck =
[
k−1, 1− k−1

]n
. From the result just proved and the fact

that the Mawhin integral is super Lebesgue (see §VI) we have∫
ck

dω =

∫
∂ck

ω. (9)

Let k→∞ in Eq. (9). The left side approaches the left side of Eq. (8) by the
Lebesgue dominated convergence theorem. And the right side approaches the
right side of Eq. (8) by the uniform continuity of ω on [ 0, 1]

n
. 2

We finish the proof of Stokes’ theorem by lifting the corollary to a manifold.
We give only an outline of a standard proof [18, pp. 303, 353 ], [28, p. 124 ], [29,
p. 354 ], [2]. Filling in the details consists mostly of verifying that the concepts
defined below are in fact well defined.

Choose m ∈ M − ∂M . Given a coordinate patch around m, translate and
stretch its domain in Rn to obtain a coordinate patch φ : U → M , where
U ⊇ [ 0, 1]

n
is open in Rn, and m ∈ φ( (0, 1)n ). Set φ( (0, 1)n ) = V . Similarly,

for m ∈ ∂M , choose a coordinate patch φ : U → M , where U ⊇ [ 0, 1]
n

is
open in the half space {x ∈ Rn : xn ≥ 0}, and m ∈ φ( ( 0, 1)n−1 × 0 ). Set
φ( ( 0, 1)n−1 × 0 ) = V .

First suppose that the support of ω is contained in a V . According to §V,
since φ∗ω is differentiable, d(φ∗ω) is given by the derivative definition Eq. (12),
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which is coordinate invariant. Thus dω may defined in the usual way so that
φ∗(dω) = d(φ∗ω). Then using the corollary (the outer equalities are definitions),∫

M

dω =

∫
[0,1]n

φ∗(dω) =

∫
[0,1]n

d (φ∗ω) =

∫
∂[0,1]n

φ∗ω =

∫
∂M

ω. (10)

For a general ω, cover the compact manifold M with a finite number of open
sets Vi of the type above. Let {fi(x)} be a partition of unity subordinate to
{Vi}: supp(fi) ⊆ Vi, fi(x) ≥ 0, fi ∈ C∞, and

∑
fi(x) = 1. Then ω =

∑
fi ω.

Since supp(fi ω) ⊆ supp(fi) ⊆ Vi, we may apply Eq. (10) to each fi ω:∫
M

dω =
∑
i

∫
M

d(fi ω) =
∑
i

∫
∂M

fi ω =

∫
∂M

ω.

V. Existence of dω and its coordinate representation. Let

ω =

n∑
j=1

fj(x) dx1 ∧ . . . ∧ d̂xj ∧ . . . ∧ dxn (11)

be an (n − 1)-form, where the hat indicates that dxj is omitted. If the fj are
differentiable at 0, then dω(0) (defined by the integral definition) exists and is
given by the derivative definition:

dω(0) =

n∑
j=1

(−1)j−1∂jfj(0). (12)

Proof. By the integral definition of dω, Eq. (3), we must show that

lim
0∈c

diam(c)→0

1

|c |

∫
∂c

n∑
j=1

fj(x) dx1∧ . . .∧ d̂xj ∧ . . .∧ dxn =

n∑
j=1

(−1)j−1∂jfj(0). (13)

We first prove Eq. (13) for cubes with sides parallel to the x-axes. For such
cubes it suffices to show that for an arbitrary p and differentiable function f ,

lim
0∈c

diam(c)→0

1

|c |

∫
∂c

f(x) dx1 ∧ . . . ∧ d̂xp ∧ . . . ∧ dxn = (−1)p−1∂pf(0). (14)

Let c have width ε and sides s±j , on which xj is constant. The only sides

in ∂c contributing to the integral in Eq. (14) are s±p . And by definition, the
orientation of s±p in ∂c is ±(−1)p−1 times the orientation of s±p in Rn, i.e.,
±(−1)p−1(x1, . . . x̂p , . . . xn) [28, p. 98 ]. Thus Eq. (14) can be written
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lim
ε→0

(−1)p−1

εn

[∫
s+p

f(x)−
∫
s−p

f(x)

]
= (−1)p−1∂pf(0). (15)

Our hypothesis that f is differentiable at 0 means that

f(x) = f(0) +

n∑
k=1

∂kf(0) xk +R (x) , (16)

where |R(x)| / |x| → 0 as |x| → 0.
We now prove Eq. (15) by substituting separately the three terms on the

right side of Eq. (16) for f(x) in the left side of Eq. (15). The result will be
the right side of Eq. (15).

First term. Substitute f(0) for f(x) in the left side of Eq. (15). The two
integrals are equal and so the result is zero.

Second term. For x ∈ s+p , let x̃ = (x̃1, . . . x̃p, . . . x̃n) be the corresponding
point on the opposite side s−p . Then x̃p = xp − ε, and for k ̸= p, x̃k = xk.
Substitute ∂kf(0)xk for f(x) in the left side of Eq. (15), omitting the limit:

(−1)
p−1

∂kf(0)

εn

∫
s+p

(xk − x̃k).

If k = p, this expression is equal to the right side of Eq. (15). If k ̸= p, the
expression is zero.

Third term. Substitute R (x) for f(x) in the left side of Eq. (15). Since
|x| ≤

√
nε on c,∣∣∣∣∣ (−1) p−1

εn

∫
s±p

R(x)

∣∣∣∣∣ ≤ 1

εn

∫
s±p

√
n ε

|x|
|R(x)| ≤

√
n sup
|x| ≤

√
nε

|R(x)|
|x|

→ 0. (17)

We have now proved Eq. (13) for cubes with sides parallel to the axes.
However, the limit in Eq. (13) is taken as diam(c) → 0 for cubes of arbitrary
orientation. Thus it remains to show that the limit is independent of and
uniform in, the orientation of the cubes.

The only limit taken in proving Eq. (15) is in Eq. (17). This limit is
independent of and uniform in the orientation of the cubes because R(x) is
invariant under a rotation of coordinates. To see this, observe that the other
three terms in Eq. (16) are invariant under a rotation. (f(x) is independent of
the coordinates assigned to the point x, and the sum is ∇f ·x, where, since f is
differentiable, ∇f is a vector.)
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VI. The Mawhin integral is super Lebesgue. If f is Lebesgue integrable
on [0, 1]

n
, then it is Mawhin integrable on [0, 1]

n
to the same value.

Proof. (From [4].) Let ϵ > 0 be given. Choose η, 0 < η < ϵ, so that if
µ(a) < η then

∫
a
|f | < ϵ.

For each integer i, set

ei = {x ∈ [0, 1]
n
: iϵ < f(x) ≤ (i+ 1)ϵ}.

The measurable and disjoint sets ei cover [0, 1]
n
.

For each integer i choose an open set gi ⊇ ei with

µ(gi − ei) <
η

3 · 2|i|(|i|+ 1)
.

Define a gauge δ: for x ∈ ei set δ(x) = dist (x, g̃i). (g̃i = [0, 1]
n− gi).

Let {cj , xj}kj=1 be a δ-fine tagged regular partition of [ 0, 1]
n
.

Now let nj be the integer for which xj ∈ enj
. Decompose cj into aj = cj∩enj

and bj = cj − enj
. Then∣∣∣∣∣∣

∫
[0,1]n

f −
k∑

j=1

f(xj)|cj |

∣∣∣∣∣∣ =
∣∣∣∣∣∣

k∑
j=1

∫
cj

(f(t)− f(xj))dt

∣∣∣∣∣∣
≤

k∑
j=1

∫
aj

|f(t)− f(xj)|dt+
k∑

j=1

∫
bj

|f |+
k∑

j=1

∫
bj

|f(xj)|dt .

We finish the proof by showing that each of the three terms on the right is ≤ ϵ.
First term. In each integral, t ∈ aj ⊆ enj

and xj ∈ enj
. Thus |f(t) −

f(xj)| < ϵ. Moreover, since aj ⊆ cj and the cj are a.e. disjoint, the aj are a.e.
disjoint. Thus

k∑
j=1

∫
aj

|f(t)− f(xj)|dt ≤
∫
[0,1]n

ϵ = ϵ .

Second term. As with the aj , the bj are a.e. disjoint. Since {cj , xj}kj=1

is δ-fine, diam(cj) ≤ δ(xj) = dist
(
xj , g̃nj

)
. Thus cj ⊆ gnj . Subtract enj from

this expression, giving bj ⊆ gnj
− enj

. It follows that the (a.e. disjoint) union
of all those bjs with the same nj is contained in gnj

− enj
. Thus

k∑
j=1

µ(bj) ≤
∑
nj

µ(gnj − enj ) <
∑
nj

η

3 · 2|nj |
< η,

whence
∑

j

∫
bj
|f | < ϵ by the definition of η.

Third term. Since η < ϵ we have

k∑
j=1

∫
bj

|f(xj)|dt =
k∑

j=1

|f(xj)|µ(bj) <
∑
nj

(|nj |+ 1)
η

3 · 2|nj |(|nj |+ 1)
< ϵ.
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The McShane integral. The Lebesgue integral can be formulated as a
generalized Riemann integral, called theMcShane integral [17], [7]. Its definition
is the same as that of the Mawhin integral, except that more partitions must
satisfy Eq. (7) than the δ-fine tagged regular partitions of the Mawhin integral.
This implies that the Mawhin integral is super McShane.

First, allow rectangles as well as cubes in a partition. This gives the multi-
dimensional HK integral.

Next, replace the condition diam(cj) ≤ δ(xj) in the definition of a δ-fine
tagged partition with the condition cj ⊆ B (xj , δ(xj)), the ball centered at xj

with radius δ(xj). Given that xj ∈ cj , the two conditions are equivalent. Now
drop the requirement that xj ∈ cj . (The condition cj ⊆ B (xj , δ(xj)) keeps xj

close to cj .) This gives the McShane integral.
The proof above that the Mawhin integral is super Lebesgue also shows

that the McShane integral is super Lebesgue. (The only thing to check is that
cj ⊆ gnj

. This follows from cj ⊆ B (xj , δ(xj)).) In fact, the Lebesgue and
McShane integrals are equivalent [17, p. 296]. McShane develops the Lebesgue
integral using his generalized Riemann integral definition.
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