Elementary Discussion of the Geometric Phase Alan Macdonald

 $\label{eq:constraint} \begin{array}{l} \mbox{Department of Mathematics} \bullet \mbox{Luther College} \\ \mbox{macdonal@luther.edu} \bullet \mbox{http://faculty.luther.edu/~macdonal} \end{array}$

1. ρ_1 is in phase with ρ_0 if $\langle \rho_0 | \rho_1 \rangle > 0$.

2. Given ρ_1 and ρ_0 with $\langle \rho_0 | \rho_1 \rangle \neq 0$, there is a unique $\alpha \pmod{2\pi}$ so that $e^{i\alpha} | \rho_1 \rangle$ is in phase with $| \rho_0 \rangle : \alpha = -\arg(\langle \rho_0 | \rho_1 \rangle)$.

3. The α of §2 maximizes $\||\rho_1\rangle + e^{i\beta}|\rho_0\rangle\|^2 = 2 + 2\text{Re}\langle\rho_0|e^{i\beta}\rho_1\rangle$, $(0 \leq \beta < 2\pi)$. This motivates "in phase with".

4. The relation "in phase with" is not transitive: if $|\rho_2\rangle$ is in phase with $|\rho_1\rangle$, and $|\rho_1\rangle$ is in phase with $|\rho_0\rangle$, then $|\rho_2\rangle$ need not be in phase with $|\rho_0\rangle$.

5. Let a differentiable curve of unit vectors $|\psi(t)\rangle$, $0 \le t \le a$ be given.

6. Define $|\rho(t)\rangle = e^{i\alpha(t)} |\psi(t)\rangle$ so that (i) $|\rho(0\rangle = |\psi(0)\rangle$ and (ii) $|\rho(t)\rangle$ "is locally in phase": $|\rho(t + dt)\rangle$ is in phase with $|\rho(t)\rangle$ for all $t, 0 \le t < a$. From §4, $|\rho(a)\rangle$ need not be in phase with $|\rho(0)\rangle$.

7. Now choose γ by §2 so that $e^{i\gamma} | \rho(a) \rangle$ is in phase with $| \rho(0) \rangle$. γ is the geometric phase of the curve $| \psi(t) \rangle, 0 \le t \le a$.

8. γ is geometric: it is independent of the phases and parametrization of $|\psi(t)\rangle$. For according to §2, $\alpha(t)$, and thus γ , are uniquely determined by the locally in phase property of $|\rho(t)\rangle$.

9. The locally in phase condition for $|\rho(t)\rangle$ is $\alpha' = \langle \psi | i\psi' \rangle$ (= $\langle \psi | H\psi \rangle$ if Schrödinger's equation generates the curve). For we must have

$$\langle \rho(t) | \rho(t+dt) \rangle = 1 + \{ \mathrm{i}\alpha'(t) + \langle \psi(t) | \mathrm{i}\psi'(t) \rangle \} dt > 0$$

(α' is real: differentiating $\langle \psi | \psi \rangle = 1$ shows that $\operatorname{Re} \langle \psi | \psi' \rangle = 0$.)

10. We evaluate γ . First, $\alpha(a) = \int_0^a \alpha'(t) dt = \int_0^a \langle \psi(t) | i \psi'(t) \rangle dt$. Thus

$$\gamma = -\arg\langle\rho(0) | \rho(a)\rangle$$

= $-\arg\langle\psi(0) | e^{i\alpha(a)}\psi(a)\rangle$
= $-\arg\langle\psi(0) | \psi(a)\rangle - \int_0^a \langle\psi(t) | i\psi'(t)\rangle dt.$ (1)

11. Consider a simple closed (up to phase) curve of states of a spin- $\frac{1}{2}$ particle. Since each state is spin up in some direction, the curve corresponds to a closed curve C on the unit sphere. Let C bound region A, which subtends solid angle Ω . Let $|\psi(\theta, \phi)\rangle = \cos(\frac{\theta}{2})| + z\rangle + e^{i\phi}\sin(\frac{\theta}{2})| - z\rangle$ represent spin up in the direction (θ, ϕ) . Apply Eq. (1) to the closed curve C, compute $\langle \psi | \psi' \rangle = \langle \psi | \psi_{\theta} \theta' + \psi_{\phi} \phi' \rangle$, apply Green's theorem, and use the element of surface area on the unit sphere, $(\sin\theta \, d\theta) d\phi$:

$$\gamma = -\int_0^a \langle \psi \,|\, \mathrm{i}\psi' \rangle dt = \oint_C \sin^2\left(\frac{\theta}{2}\right) d\phi = \frac{1}{2} \iint_A d\theta \sin\theta \,d\phi = \frac{\Omega}{2}.$$