Elementary Discussion of the Geometric Phase

Alan Macdonald
Department of Mathematics • Luther College macdonal@luther.edu • http://faculty.luther.edu/~macdonal

1. ρ_{1} is in phase with ρ_{0} if $\left\langle\rho_{0} \mid \rho_{1}\right\rangle>0$.
2. Given ρ_{1} and ρ_{0} with $\left\langle\rho_{0} \mid \rho_{1}\right\rangle \neq 0$, there is a unique $\alpha(\bmod 2 \pi)$ so that $\mathrm{e}^{\mathrm{i} \alpha}\left|\rho_{1}\right\rangle$ is in phase with $\left|\rho_{0}\right\rangle: \alpha=-\arg \left(\left\langle\rho_{0} \mid \rho_{1}\right\rangle\right)$.
3. The α of $\S 2$ maximizes $\|\left|\rho_{1}\right\rangle+\mathrm{e}^{\mathrm{i} \beta}\left|\rho_{0}\right\rangle \|^{2}=2+2 \operatorname{Re}\left\langle\rho_{0} \mid \mathrm{e}^{\mathrm{i} \beta} \rho_{1}\right\rangle$, $(0 \leq \beta<2 \pi)$. This motivates "in phase with".
4. The relation "in phase with" is not transitive: if $\left|\rho_{2}\right\rangle$ is in phase with $\left|\rho_{1}\right\rangle$, and $\left|\rho_{1}\right\rangle$ is in phase with $\left|\rho_{0}\right\rangle$, then $\left|\rho_{2}\right\rangle$ need not be in phase with $\left|\rho_{0}\right\rangle$.
5. Let a differentiable curve of unit vectors $|\psi(t)\rangle, 0 \leq t \leq a$ be given.
6. Define $|\rho(t)\rangle=\mathrm{e}^{\mathrm{i} \alpha(t)}|\psi(t)\rangle$ so that (i) $\left.|\rho(0\rangle=| \psi(0)\right\rangle$ and (ii) $|\rho(t)\rangle$ "is locally in phase": $|\rho(t+d t)\rangle$ is in phase with $|\rho(t)\rangle$ for all $t, 0 \leq t<a$. From $\S 4,|\rho(a)\rangle$ need not be in phase with $|\rho(0)\rangle$.
7. Now choose γ by $\S 2$ so that $\mathrm{e}^{\mathrm{i} \gamma}|\rho(a)\rangle$ is in phase with $|\rho(0)\rangle . \gamma$ is the geometric phase of the curve $|\psi(t)\rangle, 0 \leq t \leq a$.
8. γ is geometric: it is independent of the phases and parametrization of $|\psi(t)\rangle$. For according to $\S 2, \alpha(t)$, and thus γ, are uniquely determined by the locally in phase property of $|\rho(t)\rangle$.
9. The locally in phase condition for $|\rho(t)\rangle$ is $\alpha^{\prime}=\left\langle\psi \mid \mathrm{i} \psi^{\prime}\right\rangle(=\langle\psi \mid \mathrm{H} \psi\rangle$ if Schrödinger's equation generates the curve). For we must have

$$
\langle\rho(t) \mid \rho(t+d t)\rangle=1+\left\{\mathrm{i} \alpha^{\prime}(t)+\left\langle\psi(t) \mid \mathrm{i} \psi^{\prime}(t)\right\rangle\right\} d t>0
$$

(α^{\prime} is real: differentiating $\langle\psi \mid \psi\rangle=1$ shows that $\operatorname{Re}\left\langle\psi \mid \psi^{\prime}\right\rangle=0$.)
10. We evaluate γ. First, $\alpha(a)=\int_{0}^{a} \alpha^{\prime}(t) d t=\int_{0}^{a}\left\langle\psi(t) \mid \mathrm{i} \psi^{\prime}(t)\right\rangle d t$. Thus

$$
\begin{align*}
\gamma & =-\arg \langle\rho(0) \mid \rho(a)\rangle \\
& =-\arg \left\langle\psi(0) \mid \mathrm{e}^{\mathrm{i} \alpha(a)} \psi(a)\right\rangle \\
& =-\arg \langle\psi(0) \mid \psi(a)\rangle-\int_{0}^{a}\left\langle\psi(t) \mid \mathrm{i} \psi^{\prime}(t)\right\rangle d t . \tag{1}
\end{align*}
$$

11. Consider a simple closed (up to phase) curve of states of a spin- $\frac{1}{2}$ particle. Since each state is spin up in some direction, the curve corresponds to a closed curve C on the unit sphere. Let C bound region A, which subtends solid angle Ω. Let $|\psi(\theta, \phi)\rangle=\cos \left(\frac{\theta}{2}\right)|+z\rangle+\mathrm{e}^{\mathrm{i} \phi} \sin \left(\frac{\theta}{2}\right)|-z\rangle$ represent spin up in the direction (θ, ϕ). Apply Eq. (1) to the closed curve C, compute $\left\langle\psi \mid \psi^{\prime}\right\rangle=\left\langle\psi \mid \psi_{\theta} \theta^{\prime}+\psi_{\phi} \phi^{\prime}\right\rangle$, apply Green's theorem, and use the element of surface area on the unit sphere, $(\sin \theta d \theta) d \phi$:

$$
\gamma=-\int_{0}^{a}\left\langle\psi \mid \mathrm{i} \psi^{\prime}\right\rangle d t=\oint_{C} \sin ^{2}\left(\frac{\theta}{2}\right) d \phi=\frac{1}{2} \iint_{A} d \theta \sin \theta d \phi=\frac{\Omega}{2} .
$$

