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Abstract

Geometric calculus offers significant advantages over other formalisms in
the treatment of potentials, fields, and sources. We show this for 3D
Euclidean space and 4D Minkowski space. As a corollary we show that
charge conservation implies the existence of a field satisfying Maxwell’s
equations.

One of the principal objects of theoretical research in any department of
knowledge is to find the point of view from which the subject appears in
its greatest simplicity.” – J. W. Gibbs

The relationships between sources, fields, and potentials is a fundamental
issue in physics. Vector calculus is usually used to express the relationships
in 3D Euclidean space. Vector calculus, tensor calculus, or differential forms
are usually used in 4D Minkowski space. We show here that in both cases
the realtionships are expressed and proved in a much simpler manner using
geometric calculus. (I assume that the reader is familiar with the elements of
geometric algebra and calculus [1].)

I also point out that charge conservation implies the existence of an electro-
magnetic field satisfying Maxwell’s equations. The closest result to this of which
I am aware is that charge conservation plus two of Maxwell’s equations imply
the other two equations.[3] Thus charge conservation and the Lorentz force law
encompass all of classical electromagnetism.1

1Several years after this was written, Jose Heras obtained this result using vector calculus.
3D version: Can Maxwell’s equations be obtained from the continuity equation?, Am. J. Phys.
75 652 (2007). 4D version: How to obtain the covariant form of Maxwell’s equations from
the continuity equation, Eur. J. Phys. 30 845 (2009).
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Theorem 1 (3D Vector Calculus). Let a scalar field s and a vector field
s be time independent sources which vanish outside a bounded region R. Suppose
that

∇ ··· s = 0. (1)

Then the equations

∇ ··· f = s, (2)

∇× f = s (3)

have a unique vector field solution f which vanishes at infinity. The field f can
be obtained from a scalar potential p and a vector potential p:

f = ∇p−∇× p. (4)

Note that Eq. (1) is necessary for Eq. (3) to have a solution, as the divergence
of a curl is 0.

In vector calculus the relationships between sources, fields, and potentials
are given by Eqs. (2)–(4). In geometric calculus the sources s and s are united
into a single multivector source S, the gradient and curl are united into the
geometric calculus derivative ∇, and the potentials p and p are united into a
single multivector potential P . We shall see that ∇ expresses the relationships
between potentials, fields, and sources in geometric calculus in the simplest
possible way:

∇P = F and ∇F = S.

These two geometric calculus equations replace the vector calculus Eqs. (2)–(4).

The results here are closely related to Helmholtz’s theorem [2]. Both involve
potentials, fields, and sources related as above. The difference is of perspective:
in the results here the source is given, whereas with Helmholtz’s theorem the
field is given.

Instead of proving Theorem 1 directly, we first prove the geometric calculus
version of the theorem. We then prove Theorem 1 as a corollary.
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Theorem 2 (3D Geometric Calculus). Let S be a time independent
bounded multivector source which vanishes outside a bounded region R. Then
there is a unique multivector solution F to the equation

∇F = S (5)

satisfying limx→∞ F (x) = 0. The solution satisfies |F (x)| ≤ M/|x|2 for some
constant M .

The field F has a potential P: F = ∇P . The potential has the same grades
as S. If S is a vector and ∇ ··· S = 0, then ∇ ··· P = 0.

Proof. Let s be a scalar field satisfying the conditions of the theorem. Then
there is a unique scalar solution p to Poisson’s equation ∇2p = s which vanishes
at infinity [4]. The potential p is given by

p(x) = −
∫
R

s(x′)

4π|x− x′|
dV ′.

Apply this grade-by-grade to S in Eq. (5) to obtain a multivector potential
P with the same grades as S satisfying ∇2P = S:

P (x) = −
∫
R

S(x′)

4π|x− x′|
dV ′. (6)

It is easy to see that F = ∇P is a solution to Eq. (5):

∇F = ∇(∇P ) = (∇∇)P = ∇2P = S. (7)

Since ∇(1/|x|) = −x/|x|3, Eq. (6) gives

F (x) = ∇P (x) = −
∫
R

∇ S(x′)

4π|x− x′|
dV ′ =

∫
R

(x− x′)S(x′)

4π|x− x′|3
dV ′. (8)

Eq. (8) gives an explicit solution of Eq. (5).
From Eq. (8),

|F (x)| ≤
∫
R

|S(x′)|
4π|x− x′|2

dV ′. (9)

Since S is bounded and R is bounded, |F (x)| ≤M/|x|2.
Now suppose that F1 and F2 are two solutions of Eq. (5) with limx→∞ Fi(x) =

0. Set Φ = F2 − F1. Then limx→∞Φ(x) = 0. Moreover, Φ is harmonic:
∇2Φ = ∇(∇F2 − ∇F1) = 0. According to the mean value theorem for har-
monic functions, Φ(x) = (4πa2)−1

∫
|x′−x|=a

Φ(x′) dA′. Let a → ∞. Then

|Φ(x)| ≤ sup|x′−x|=a |Φ(x′)| → 0. This proves uniqueness.
Appendix 1 shows that if S is a vector with ∇···S = 0, then ∇···P = 0. �
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Theorem 2 is a good example of the clarity that geometric calculus can bring.
In vector calculus the potential is obtained as above. But then the power of
geometric calculus comes to the fore.

In geometric calculus ∇ can operate on all multivectors, in particular on
vectors. This allows the trivial geometric calculus calculation Eq. (7), giving
the simple relationships ∇P = F and ∇F = S. Note the essential use of the
associativity of the geometric product in Eq. (7): ∇(∇P ) = (∇∇)P . In vector
calculus ∇2 cannot be factored and ∇f cannot be written for a vector f . This
leaves us with the more awkward relationships, Eqs. (2)–(4), between sources,
fields, and potentials.

We can now prove Theorem 1. Of course this is of interest only for those
continuing to use vector calculus instead of switching to geometric calculus.

Proof. Recall the geometric calculus identities

∇f = ∇ ··· f +∇∧ f = ∇ ··· f − (∇× f)∗. (10)

Take the dual of Eq. (3), subtract from Eq. (2), and use Eq. (10), giving

∇f = s− s∗. (11)

The single geometric calculus Eq. (11), with the stipulation that f be a vector,
is equivalent to the two vector calculus Eqs. (2) and (3). From Theorem 2,
Eq. (11) always has a geometric calculus solution f , although it need not be a
vector.

Eq. (6) shows that if p is the potential for the vector s, then p∗ is the
potential for s∗. Thus f = ∇(p− p∗), where p is a scalar and p∗ is a bivector.

Theorem 1 shows that if ∇ ··· s = 0 (Eq. (1)), then ∇ ··· p = 0. And by the
associativity of the geometric product, ∇(p∗) = (∇p)∗. Eq. (4) follows:

f = ∇(p− p∗) = ∇p− (∇p)∗ = ∇p− (∇∧ p)∗ = ∇p−∇× p . (12)

In particular, f is a vector. �

Theorem 3 below treats time dependent sources, fields, and potentials. Its
proof closely follows the proof of Theorem 2, except that it is based on solutions
of the wave equation rather than on Poisson’s equation. Standard proofs of
related theorems use tensor analysis or differential forms [5]. They are compli-
cated, in part because they are teeming with coordinate indices. Instead, we
use again the coordinate free Eq. (7) of geometric calculus.
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Theorem 3 (4D Geometric Calculus). Let ∇ be the spacetime geometric
calculus derivative: ∇ = e0∂t − e1∂x − e2∂y − e3∂z. Let S be a time dependent
bounded multivector source which satisfies this condition: given (t, x) there is an
a > 0 so that S(t−|x−x′|, x′) = 0 for |x−x′| ≥ a.2 Then there is a multivector
solution F to the equation

∇F = S. (13)

The field F has a potential P : F = ∇P . The potential has the same grades as
S. If S is a 4-vector with ∇ ··· S = 0 then ∇ ··· P = 0.

Proof. Note that ∇2 = ∂2t − ∂2x − ∂2y − ∂2z . Let s be a scalar field satisfying
the conditions of the theorem. Then the wave equation∇2p = s has a (retarded)
solution [6]:

p(t, x) = −
∫
|x−x′|≤a

s(t− |x− x′|, x′)
4π|x− x′|

dV ′. (14)

As in Eqs. (6)–(8) we obtain a solution to Eq. (13):

F = ∇P (t, x) = −
∫
|x−x′|≤a

∇ S(t− |x− x′|, x′)
4π|x− x′|

dV ′. (15)

Appendix 2 shows that if S is a vector with ∇ ··· S = 0, then ∇ ··· P = 0. �

Maxwell’s four equations in vector calculus are expressed by a single equation
in geometric calculus, ∇F = S, where F is the electromagnetic field and S is the
charge-current 4-vector.3 This is the simplest equation expressing the charge
as some sort of a derivative of the field. According to Theorem 3, Maxwell’s
equation has a solution F = ∇P given by Eq. (15). Moreover, ∇ ··· P = 0, since
∇ ··· S = 0 expresses charge conservation. Thus

F = ∇P = ∇ ··· P +∇∧ P = ∇∧ P. (16)

Geometric calculus represents an electromagnetic field with a bivector, ∇∧ P .
We have assumed charge conservation and proved the existence of a field

satisfying Maxwell’s equation:

Charge conservation =⇒ Maxwell’s equation.

This shows that there is no more physics in Maxwell’s equation than in charge
conservation. The additional physics in Maxwell’s theory comes from the Lorentz
force law.
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(x, t)

t-a

R

The condition says that S = 0 on the past light cone of (t, x) at suffi-
ciently early times. The spacetime diagram shows that it is satisfied if
S(t, x) = 0 outside a fixed spatially bounded region R for all t. It is also
satisfied if S(t, x) = 0 outside a spatially bounded region at some time
t0 ≤ t and always moves with a velocity bounded away from c = 1.

3 Two equations are required in tensor calculus and differential forms [7].
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Appendix 1. We complete the proof of Theorem 2 by showing that if S is
a vector and ∇ ··· S = 0, then ∇ ··· P = 0. Compute

∇ ··· S(x′)

|x− x′|
=

(
∇ 1

|x− x′|

)
··· S(x′) (17)

= −
(
∇′ 1

|x− x′|

)
··· S(x′)− 1

|x− x′|
∇′ ··· S(x′) = −∇′ ··· S(x′)

|x− x′|
.

Now use Eq. (6), Eq. (17), the divergence theorem, and S|∂R = 0:

∇ ··· P (x) = −
∫
R

∇ ··· S(x′)

4π|x− x′|
dV ′

=

∫
R

∇′ ··· S(x′)

4π|x− x′|
dV ′ =

∫
∂R

S(x′)

4π|x− x′|
··· dA′ = 0. (18)

Appendix 2. We complete the proof of Theorem 3 by showing that if S is
a vector and ∇ ··· S = 0, then ∇ ··· P = 0.

Let ∂i be the partial derivative with respect to the ith argument, i = 0, 1, 2, 3.
For simplicity of notation in obtaining Eq. (19) below, we use only one spatial
coordinate x. Then S(t, x) = s0(t, x)e0+s1(t, x)e1. We may substitute anything
we like for (t, x) in ∇ ··· S(t, x) = ∂0s0(t, x) + ∂1s1(t, x) = 0. In particular,

∂0s0(t− |x− x′|, x′) + ∂1s1(t− |x− x′|, x′) = 0.

Since only the 0th argument of S(t− |x− x′|, x′) depends on t or x,

∇ ··· S(t− |x− x′|, x′)
= ∂0s0(t− |x− x′|, x′) ∂t(t− |x− x′|) + ∂0s1(t− |x− x′|, x′) ∂x(t− |x− x′|)
= −∂1s1(t− |x− x′|, x′) + ∂0s1(t− |x− x′|, x′) ∂x′ |x− x′|
= −∇′3 ··· S3(t− |x− x′|, x′), (19)

where S3 and ∇′3 are the spatial components of S and ∇′. From this,

∇ ··· S(t− |x− x′|, x′)
|x− x′|

=

(
∇ 1

|x− x′|

)
··· S(t− |x− x′|, x′) +

1

|x− x′|
∇ ··· S(t− |x− x′|, x′)

=

(
−∇′3

1

|x− x′|

)
··· S3(t− |x− x′|, x′)− 1

|x− x′|
∇′3 ··· S3(t− |x− x′|, x′)

= −∇′3 ···
S3(t− |x− x′|, x′)

|x− x′|
. (20)

Now calculate as in Eq. (18) to obtain ∇ ··· P = 0.
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