Vector and Geometric Calculus

December 2023 printing

Alan Macdonald

Professor Emeritus of Mathematics Luther College, Decorah, IA 52101 USA macdonal@luther.edu faculty.luther.edu/~macdonal

Geometry without algebra is dumb! - Algebra without geometry is blind!

- David Hestenes

The principal argument for the adoption of geometric algebra is that it provides a single, simple mathematical framework which eliminates the plethora of diverse mathematical descriptions and techniques it would otherwise be necessary to learn.

- Allan McRobie and Joan Lasenby

To Ellen

Copyright © 2012 Alan Macdonald

Contents

Contents							
Pr	eface		vii				
To	the	Student	хi				
Ι	Pre	el iminaries	1				
1	Cur	ve and Surface Representations	3				
	1.1	Curve Representations	5				
	1.2	Surface Representations	7				
	1.3	Polar, Cylindrical, Spherical Coordinates	11				
2	Lim	Limits and Continuity 1					
	2.1	Open and Closed Sets	13				
	2.2	Limits	15				
	2.3	Continuity	18				
п	D	erivatives	21				
3	The	Differential	23				
	3.1	The Partial Derivative	23				
	3.2	The Differential	28				
	3.3	The Directional Derivative	33				
	3.4	The Chain Rule	35				
	3.5	Taylor's Formula	40				
	3.6	Inverse and Implicit Functions	42				
4	Tan	gent Spaces	47				
	4.1	Manifolds	47				
	4.2	Tangent Spaces to Curves	50				
	4.3	Tangent Spaces to Surfaces	54				

5			59
	5.1		59
	5.2		60
	5.3		67
	5.4		72
	5.5		80
	5.6	The Vector Derivative	37
6	Ext		93
	6.1		93
	6.2	Lagrange Multipliers	98
II	I I	ntegrals 10	3
7	Toolo	grals over Curves 10	15
1	7.1	grals over Curves 10 The Scalar Integral	_
	7.2	The Path Integral	
	7.3	The Line Integral	
	1.0	The line moderni.	LI
8	Mul	tiple Integrals 12	21
	8.1	Multiple Integrals	21
	8.2	Change of Variables	27
9	Inte	grals over Surfaces 13	
	9.1	The Surface Integral	
	9.2	The Flux Integral	34
I	7 1	The Fundamental Theorem of Calculus 13	9
10	The	Fundamental Theorem of Calculus 14	11
		The Fundamental Theorem of Calculus	$^{}$
		The Divergence Theorem	
		The Curl Theorem	
		The Gradient Theorem	
	10.5	Analytic Functions	57
\mathbf{v}	D	ifferential Geometry 16	1
11	Diff	erential Geometry in \mathbb{R}^3	33
		Curves	_
		Surfaces	
		Curves in Surfaces	
		Differential Geometry in \mathbb{R}^n	

VI Appendices	185
A Geometric Algebra Review	187
B Formulas from this Book	190
C Differential Forms	192
D Extend Fields on Manifolds	194
Index	195

Preface

Vector and Geometric Calculus is intended for the second year vector calculus course. It is a sequel to my text Linear and Geometric Algebra. That text is a prerequisite for this one. Single variable calculus is also a prerequisite.

Linear algebra and vector calculus have provided the basic vocabulary of mathematics in dimensions greater than one for the past one hundred years. Geometric algebra generalizes linear algebra in powerful ways. Similarly, geometric calculus generalizes vector calculus in powerful ways.

Traditional vector calculus topics are covered here, as they must be, since readers will encounter them in other texts and out in the world.

The final chapter is a brief introduction to (mostly 3D) differential geometry, used today in many disciplines, including architecture, computer graphics, computer vision, econometrics, engineering, geology, image processing, and physics.

Tensor calculus and differential forms are two formalisms used to extend vector calculus beyond three dimensions. Geometric calculus provides an at once simpler, more general, more powerful, and easier to grasp way to break loose from \mathbb{R}^3 . Section 5.4, *Exact Fields*, translates elementary differential forms definitions, theorems, and examples to geometric calculus.

Linear algebra is the natural mathematical background for vector calculus. Yet even today it is unusual for a vector calculus text to have a linear algebra prerequisite. This has to do, I suppose, with authors and publishers wanting to reach the largest possible audience. I cite my text *Linear and Geometric Algebra* freely and pervasively to advantage.

Vector and geometric algebra and differential vector and geometric calculus (Part II of this book) are excellent places to help students better understand and create proofs. But for integral calculus (Part III) rigorous proofs of fundamental theorems at the level of this book are mostly impossible. So I do not try.

Instead, I use the language of infinitesimals, while making it clear that they do not exist within the real number system. I believe that the first and most important way to understand integrals is intuitively: they "add infinitely many infinitesimal parts to give a whole". Rigorous definitions should come later.

¹D. Hestenes and G. Sobczyk have argued in detail the superiority of geometric calculus over differential forms (*Clifford Algebra to Geometric Calculus*, D. Reidel, Dordrecht Holland 1984, Section 6.4, especially at the end.

Others endorse this approach: "An approach based on [infinitesimals] closely reflects the way most scientists and engineers successfully use calculus. We continue to find it remarkable that the mainstream mathematics community insists on downplaying the use of infinitesimals, most especially when teaching calculus." "The fact is that in many situations ... the interpretation of the integral as a sum of infinitesimals is the clearest way to understand what is going on." From Lagrange: "When we have grasped the spirit of the infinitesimal method, and have verified the exactness of its results, ... we may employ infinitely small quantities as a sure and valuable means of shortening and simplifying our proofs. And even Cauchy: "My main aim has been to reconcile the rigor which I have made a law in my Cours d'Analyse, with the simplicity that comes from the direct consideration of infinitely small quantities" (My emphasis.)

There are over 200 exercises interspersed with the text. They are designed to test understanding of and/or give simple practice with a concept just introduced. My intent is that readers attempt them while reading the text. That way they immediately confront the concept and get feedback on their understanding. There are also more challenging problems at the end of most sections – almost 200 in all.

The exercises replace the "worked examples" common in most mathematical texts, which serve as "templates" for problems assigned to students. We teachers know that students often do not read the text. Instead, they solve assigned problems by looking for the closest template in the text, often without much understanding. My intent is that success with the exercises requires engaging the text.

Some exercises and problems require the use of the free multiplatform Python module $\mathcal{G}A$ lgebra. It is based on the Python symbolic computer algebra library SymPy (Symbolic Python). GAlgebraPrimer.pdf describes the installation and use of the module. $\mathcal{G}A$ lgebra is available at the book's web site.

Everyone has their own teaching style, so I would ordinarily not make suggestions about this. However, I believe that the unusual structure of this text (exercises instead of worked examples), requires an unusual approach to teaching from it. I have placed some thoughts about this in the file "VAGC Instructor.pdf" at the book's web site. Take it for what it is worth.

The first part of the index is a symbol index.

Some material which is difficult or less important is printed in this smaller font.

²Tevian Dray and Corinne Manogue, *Using Differentials to Bridge the Vector Calculus Gap*, The College Mathematics Journal **34**, 283-290 (2003).

³Gerald Folland, Advanced Calculus, p. 157, Pearson (2001).

⁴Méchanique Analytique, Preface; Ouveres, t. 2 (Paris, 1988), p. 14.

⁵Quoted in *Cauchy's Continuum*, Karin Katz and Mikhail Katz, Perspectives on Science 19, 426-452. Also at arXiv:1108.4201v2.

There are several appendices. Appendix A reviews some parts of *Linear and Geometric Algebra* used in this book. Appendix B provides a list of some geometric calculus formulas from this book. Appendix C provides a short comparison of differential forms and geometric calculus. Appendix D proves a couple of technical results needed in the text.

Numbered references to theorems, figures, etc. preceded by "LAGA" are to Linear and Geometric Algebra.

There are several URL's in the text. To save you typing, I have put them in a file "URLs.txt" at the book's web site.

Please send corrections, typos, or any other comments about the book to me. I will post them on the book's web site as appropriate.

Acknowledgements. I thank Dr. Eric Chisolm, Greg Grunberg, Professor Philip Kuntz, James Murphy, and Professor John Synowiec for reading all/most of the text and providing and helpful comments and advice. Professor Mike Taylor answered several questions. I give special thanks to Greg Grunberg and James Murphy. Grunberg spotted many errors, made many valuable suggestions and is an eagle eyed proofreader. Murphy suggested major revisions in the ordering of my chapters.

I thank Dr. Isaac To and Dr. Nicholas R. Todd for pointing out errors.

I also thank the ever cooperative Alan Bromborsky for extending $\mathcal{G}A$ lgebra to make it more useful to the readers of this book.

Thanks again to Professor Kate Martinson for help with the cover design.

In general the position as regards all such new calculi is this - That one cannot accomplish by them anything that could not be accomplished without them. However, the advantage is that, provided such a calculus corresponds to the inmost nature of frequent needs, anyone who masters it thoroughly is able - without the unconscious inspiration of genius which no one can command - to solve the respective problems, indeed to solve them mechanically in complicated cases in which, without such aid, even genius becomes powerless. Such is the case with the invention of general algebra, with the differential calculus, Such conceptions unite, as it were, into an organic whole countless problems which otherwise would remain isolated and require for their separate solution more or less application of inventive genius.

- C. F. Gauss

Printings

From time to time I issue new printings of this book, with corrections and improvements. The printing version is shown on the title page.

Second Printing. I thank again Gregory Grunberg for many suggestions and expert proofreading. Christoph Bader and Dr. Gavin Polhemous pointed out shortcomings in the notation of Section 5.5. And I thank Dr. Manuel Reenders, a recent arrival, for many suggestions and corrections, especially with regard to the exercises and problems.

Third Printing. I thank a new eagle eyed reader, Nicholas H. Okamoto, for sending me errata.

Fifth Printing. I thank the very careful new reader Professor Mark R. Treuden for helpful comments and corrections.

August 2019 Printing. A new Section 5.4, *Exact Fields*, translates differential forms language to geometric calculus language: closed fields, exact fields potentials, etc.. It was gathered and improved from existing sections.

May 2020 Printing. The idea of a tangent map has been moved to a more appropriate place. There are a few new exercises/problems. All errors known to me have been corrected. All were minor.

October 2020 Printing. I've added material on the Helmholtz decomposition. The last part of Section 10.4 has been moved to Section 10.5. The section also contains some recently published results about antiderivatives. The new Section 11.4 introduces the differential geometry of manifolds of arbitrary dimension. There are several other small improvements.

January 2021 Printing. There are minor improvements.

June 2021 Printing. Eq. (9.3) is new. It provides a better understanding of the definitions of the surface and flux integrals. The last two sections of Chapter 10 have been rearranged. A geometric calculus version of the Helmholtz decomposition has been added to Section 10.5 to go with the vector calculus version in Section 5.4. There is a new Section 11.4, Manifolds in \mathbb{R}^n . There are many minor improvements and corrections.

January 2022 Printing. I have tried to make the text clearer in a number of places. Section 10.5, Analytic Functions, has been rearranged yet again. All errors/typos known to me have been corrected.

The text is improved in several places. The definition of limit have been given a new pictorial form, enabling better understanding of this concept. All errors/typos known to me have been corrected.

September 2023 Printing. There is a new short description of the gradient descent algorithm. All errors/typos known to me have been corrected.

December 2023 Printing. I have fixed many errors in citations to *Linear and Geometric Algebra*. All errors/typos known to me have been corrected.

To the Student

Appendix A is a review of some items from *Linear and Geometric Algebra* (LAGA) used in this book. A quick read through it might be helpful before starting this book.

I repeat here my advice from Linear and Geometric Algebra.

Research clearly shows that *actively* engaging course material improves learning and retention. Here are some ways to actively engage the material in this book:

- Don't just read the text, *study* the text. This may not be your habit, but many parts of this book require reading and rereading again later before you will understand.
- Instructors in your previous mathematics courses have probably urged you to try to *understand*, rather than simply memorize. That advice is especially appropriate for this text.
- Many statements in the text require some thinking on your part to understand. Take the time to do this instead of simply moving on. Sometimes this involves a small computation, so have paper and pencil on hand while you read.
- Definitions are important. Take the time to understand them. You cannot know a foreign language if you do not know the meaning of its words. So too with mathematics. You cannot know an area of mathematics if you do not know the meaning of its defined concepts.
- Theorems are important. Take the time to understand them. If you do not understand what a theorem says, then you cannot understand its applications.
- Exercises are important. Attempt them as you encounter them in the text. They are designed to test your understanding of what you have just read. Some are trivial, there just to make sure that you are paying attention. But do not expect to solve them all. Even if you cannot solve an exercise you have learned something: you have something to learn!

The exercises require you to think about what you have just read, think more, perhaps, than you are used to when reading a mathematics text. This is part of my attempt to help you start to acquire that "mathematical frame of mind".

Write your solutions neatly in clear correct English.

- Proofs are important, but perhaps less so than the above. On a first reading, don't get bogged down in a difficult proof. On the other hand, one goal of this course is for you to learn to read and construct mathematical proofs better. So go back to those difficult proofs later and try to understand them.
- Important: take the above points seriously!

The World Wide Web makes it possible for me to leave out material that I would otherwise have to include. For example, the book refers to the *Coulomb force* without defining it. Perhaps you already know what it is. If not, and you want to know, actively engage the course material: Google it.

Index

B - A, 14	$O_{ij}, 40$
$D_{\mathbf{h}}\mathbf{f}, 33$	$\frac{\partial}{\partial x_i}$, 23
$Hf(\mathbf{x}), 95$	au, 164
K, 173	I I, 171
S, 131	$T_{\mathbf{p}},54$
b , 163	$\widehat{\mathbf{B}}$, 131
$\bar{\mathbf{n}}$, 143	$\hat{\mathbf{n}}, 4, 170$
∇ , 60	$\hat{\mathbf{t}}$, 131
$ abla^2$, 62	$\mathbf{x}_u, 54$
$\nabla_{\mathbf{h}}\mathbf{f}, 33$	$\{oldsymbol{w}^j\},80$
∂ , 87	$\{oldsymbol{w_k}\},80$
$\dot{\nabla}$, 61	$d\mathbf{s}$, 110
$\mathbf{e_r},82$	$f_x,24$
f ' _{p} , 89	$f_{xy}, 26$
$\mathbf{f}_{\mathbf{x}}', 29$	\mathcal{GA} lgebra, viii
$rac{\widetilde{\delta(x,y)}}{\delta(u,v)},127$	
$\widehat{m{w}}_{m{k}}, 82$	adjoint, 71, 188
i, j, k, 4	analytic function, 157
$\iiint_V F dV$, 125	angular momentum, 77
$\iint_A F dA$, 121	antiderivative, 107, 159
$\iint_S^A dS F$, 132	arclength, 111
$\iint_S d\mathbf{S} \vec{F}$, 134	axial vector, 53
$\iint_{S} d\boldsymbol{\sigma} F$, 135	1 .
$\int_C^s F ds$, 110	basis
$\int_a^b f dx, 106$	reciprocal, 85
κ , 163	binormal vector, 163, 164
κ_g , 177	boundary, 142
κ_n , 177	boundary values, 158
$\mathcal{L}(\mathbf{U}, \mathbf{V}), 189$	bounded function, 106
n, 163	bounded set, 94
φ, 115	Cauchy's integral formula, 158
∂M , 141	Cauchy's integral theorem, 157
$\partial_{\mathbf{h}}\mathbf{f}(\mathbf{p}), 169$	Cauchy-Riemann equations, 157
$\partial_{\mathbf{h}}$, directional derivative	Cauchy-Pompeiu formula, 158
\mathbb{R}^n , 33	central field, 77–79
∂_i , 23	chain rule, 35
∂_u , 87	change of variables, 127
∂_u , 87 ∂_{uv} , 97	circulation, 115, 117, 153
ouv, or	onouration, 110, 111, 100

closed	derivative test
curve, 118	first, 93, 94
interval, 14	second, 93 , 95
set, 14	determinant, 189
commutator, 52, 184	differentiable, 28, 60
compact set, 94	differential, 28
complement, 14	surface, 89
congruent, 165	differential forms, vii, 184, 192
connected set, 20	differential geometry, 163
conservation	directed integral, 135, 143
angular momentum, 77	divergence, 62, 69, 136, 148
energy, 77	divergence theorem, 147
conservation law, 76, 78	divergence-free, 150
conservative, 72	dot notation, 61
conservative field, 73, 77	double integral, 121
conserved quantity, 76	dual, 188
continuity equation, 150	duality, 188
continuous function, 18	ddaisy, 100
continuously differentiable, 30	Einstein tensor, 184
well-defined, 92	elasticity, 27
contractible, 73, 75	electromagnetic field, 66
closed curve, 73	electromagnetism, 65
coordinate independent	embedded manifold, 181
∇ , 60	entropy, 101
curl, 62	equation of continuity, 150
curvilinear, 81	Euler characteristic, 182
divergence, 62	exact
coordinates	bivector field, 76
orthogonal, 82	differential equation, 79
Coulomb force, 75	field, 72
covariant derivative, 92, 184	vector field, 73
cross product, 55, 188	extend
curl, 62, 69, 70, 117	field on manifold, 49, 194
curl theorem, 151	parameter function, 49, 194
curvature, 163, 184	extend F , 49
curve	exterior derivative, 192
parameterization, 5	extrema, 93
curvilinear coordinates, 11, 80	extrinsic, 175
cylindrical coordinates, 11, 82	extrinsic curvature, 184
Darboux basis, 177	field, 59
Darboux bivector, 165	central, 77, 79
De Morgan's laws, 14	closed, 72
derivative	inverse square, 75
covariant, 92, 184	field equation, 184
differential, 28	first derivative test, 93, 94
directional, 33, 67, 169, 184	first fundamental form, 181
gradient, 60	fluid, 136
partial, 23	fluids, 115, 150
vector 141	flux 136 148

flux integral, 134	double, 121
formulas, 190	flux, 134
Frenet basis, 164	how to think about, 108
Frenet-Serret equations, 164	iterated, 123
fundamental identities, 187	line, 114
fundamental theorem	path, 110
scalar calculus, 107	scalar, 105, 106
geometric calculus, 141	surface, 132
fundamental theorem of vector calculus,	triple, 125
79	integrand, 108
10	integration by parts, 148, 153
Gauss map, 173	intermediate value theorem
Gauss' theorem, 147	$f(\mathbf{x}), 20$
Gauss-Bonnet theorem, 182	double integral, 122
Gaussian curvature, 173	intrinsic, 175
general relativity, 184	
geodesic, 180	intrinsic curvature, 184
	inverse function theorem, 42
geodesic curvature, 177	irrotational, 70
geodesic normal vector, 177	iterated integral, 123
geometric calculus, 3	Tarabian 00
geometric product, 187	Jacobian, 28
GPS, 46	Jacobian determinant, 28
gradient, 59, 60, 67, 68	IZ 1 1 70
and linear transformations, 71	Kepler's laws, 78
curvilinear coordinates, 81	kinetic energy, 77
linear transformations, 71	T C 40
gradient descent, 94	Lagrange form, 40
gradient theorem, 117, 156	Lagrange multiplier, 98
Green's functions, 158	Laplacian, 62
Green's identities, 149	least squares, 97
Green's theorem, 154	level
	set, 68
harmonic function, 79, 157	level curve, 7
Helmholtz decomposition, 159	level surface, 69
Hessian matrix, 95	limit, 15
homogeneous function, 38	line integral, 114
	linear transformation, 188
ideal gas law, 39	Liouville's theorem, 79
implicit differentiation, 44	local inverse, 43
incompressible, 70	local minimum, 93, 94
indefinite integral, 107	strict, 93, 94
index lowering, 171	longitudinal, 70
index raising, 171	
infinitesimal, 108	Möbius strip, 88
inflection point, 93	manifold, 47, 141
inner product, 187	with boundary, 47, 141
integrable, 106	Maxwell relation, 26
integral	Maxwell's equation, 66
definite, 106	Maxwell's equations, 65, 76
directed, 135, 141	integral form, 149

mean value theorem	$T_{\mathbf{p}}, 56$
scalar, 27	$ds^2,169$
vector, 39	continuously differentiable, 87
measure zero, 106	parameterize
meridians, 182	arclength, 112
metric, 113, 168	curve, 5
mixed partial derivative, 25	surface, 8
monogenic, 157	partial derivative, 23
multiple integral, 126	geometric interpretation, 24
multivariable calculus, 3	partial differential equation, 38
	partition, 105
neighborhood, 13	interval, 105
Newton's law of gravitation, 75, 78	path independent, 117, 118
Newton's second law, 77, 78	path integral, 110
Noether's theorem, 78	pitch, 112
norm, 188	planimeter, 154
normal curvature, 177	Poincaré Lemma, 75
normal plane, 177, 178	polar coordinates, 11
normal section, 177, 178	positive definite matrix, 95
normal vector	potential, 72
$f(\mathbf{x}) = k$ representation, 68	scalar, 73
z = f(x, y) representation, 55	vector, 76
outward boundary, 143	potential energy, 77
principal, 164	principal curvatures, 178
to curve, 163	principal vectors, 178
to surface, 143	principle of maximum entropy, 101
notation, 4	pseudo-Riemannian manifold, 184
•	pseudoscalar, 188
open	pseudosphere, 173
interval, 14	pseudovector, 53, 65
set, 13	pullback, 91
operator	pushforward, 91
gradient, 60	r
vector derivative, 87	reciprocal basis, 81, 85, 85
operator norm, 189	relativity
orientable, 88, 143	general, 169, 184
orientation	special, 55, 66
manifold, 143	reverse, 188
orthogonal complement	Ricci curvature, 184
\mathbb{G}^{n} , 188	Riemann curvature, 184
orthogonal coordinates, 82	Riemann sum, 105
osculating plane, 165	Riemannian manifold, 183, 184
outer product, 187	rotational velocity, 52, 53, 165
outermorphism, 188	rotational velocity bivector, 52
outward normal, 143	rotational velocity vector, 53
outward normal vector, 143	
70002, 22	saddle point, 95
parallels, 182	scalar calculus, 3
parameter, 5	scalar curvature, 184
parameter independent	scalar functions. 3

second derivative test, 93, 95	vector calculus, 3
second fundamental form, 181	vector derivative, 87
Seifert surface, 152	vector potential, 76
shape, 184	
shape operator, 170, 183	wave equation, 38, 66
simply connected, 73	Weingarten equation, 171
Simpson's rule, 108	well-defined
solenoidal, 72	continuously differentiable, 92
spacetime, 66, 184	well-defined
spherical coordinates, 12, 83	∇ , 60
right handed, 82	ð , 87
Stokes's theorem, 151	Wolfram Integrator, 108
strict local minimum, 93, 94	work, 115
summation convention, 4	,
surface	
orientable, 88	
parameterization, 8	
_ _ _	
surface integral, 132	
surface of revolution, 133, 173, 176, 182	
symmetry, 78	
SymPy, viii	
tangent algebra, 54	
tangent field, 91, 170	
tangent map, 90	
tangent space, 49	
curve, 50	
manifold, 56	
surface, 54	
tangent vector, 56	
curve, 50	
surface, 54	
unit, 112	
Tau manifesto, 158	
Taylor series, 41	
Taylor's formula, 40	
telescoping sum, 30	
tensors, vii	
topological invariant, 182	
Torricelli's trumpet, 133	
torsion, 164	
total curvature, 184	
total derivative, 37	
trace, 71	
transverse, 70	
trapezoidal rule, 108	
triple integral, 125	
twisted cubic, 167	
•	

uncertainty, 101