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1. Introduction

Let E be a complete locally convex topological vector space. Let Z be a
locally compact, a-compact, topological space with a positive Radon measure
n. Let A be a K6the space of real valued measurable functions on Z. In [11]
we have investigated the space A(E) which is, roughly speaking, the space of
measurable functions f: Z E such that p(f) s A for every continuous semi-
norm p on E. The space A(E) is topologized by the seminorms q p(f) as p
and q run through the families of continuous seminorms on E and A respectively.

In this paper, we study the space A[E] which is the completion of a space of
measurable functions f: Z E such that for every x’ s E’, we have

(f(’), x’) e A.

The space A[E] will be topologized by the seminorms

Sup {q((f(z), x’)): x’ e U}
as q runs through the family of continuous seminorms on A and U runs through
the family of neighborhoods of zero in E.
The space ArE] has been extensively studied by Pietsch [-12] when Z is the

natural numbers and n the counting measure; Cac [3] has chosen a slightly
different definition for A[E] and studied the spaces so obtained.

In Section 2, we review the relevant material about K6the spaces. In Section
3, we study properties of the spaces ARE]. In Section 4, the topological dual of
ArE] is investigated. In Section 5, we see how certain spaces of linear maps can
be represented by A[E], thus extending or complementing the results of several
authors.

2. Definitions and notation

We recall briefly the theory of K6the spaces as presented in [4]. The space
is the set of locally integrable, real valued measurable functions on Z and is
topologized by the seminorms K [al dn as K runs through the compact sets of Z.
A set A

_
f is solid if it contains with every a A also ab where b is in the

unit ball of L. A Kb’the space A will be a solid subspace of containing the
characteristic functions of relatively compact measurable sets. A topology on
A is solid if it has a base of solid neighborhoods of zero. If A has a solid topol-
ogy, Q will be the set of continuous seminorms which are gauges of solid
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neighborhoods. We say that (A, E) is a dual pair of K6the spaces if labl drc <
c for all a A and b E. The integral ab dn will always be understood to be
the bilinear form connecting the spaces. The K6the dual A* of A is defined by

 orall  A1.
The solid hull of A

___
f is the smallest solid set containing A.

If (A, 2) is a dual pair of K6the spaces, then the normal topolo9y on A is
the topology of uniform convergence on solid hulls of points of 2. This is a
solid topology with A’ 2. If in addition A ;*, then A is complete under
the normal topology and thus also under the Mackey and strong topologies.
These latter topologies are also solid.
The topological dual of f is the space of all essentially bounded measurable

functions of essentially compact support.
Let E be a locally convex space. Let P be the set of continuous seminorms

on E. If p e P, let Ep be the completion of the normed space E/p-1(0) and
Op’E--. E, be the canonical map. A function f from Z into a topological
space is measurable [1, p. 169-] if given a compact set K

__
Z and e > 0 there

is a compact set K’
_
K with 7r(K K’) < e and fl/, continuous. A function

f: Z E is p-measurable if 0 f is measurable for every p e P. The functionf
is weakly measurable if it is measurable when E is given the weak topology
tr(E, E’) and is scalarly measurable if (f(’), x’) is measurable for every x’ e E’.

Consider the space of functions f: Z E which are p-measurable and such
that p(f) dz < oe for every compact K and p e P. Define fo(E) to be the
separated space associated with this space when equipped with the seminorms

p(f)drc and f(E) to be its completion. We define (E’) to be the set of
tr(E’, E) scalarly measurable functions 9" Z E’ satisfying the following
condition" For every compact set K, 91/ bgo where b is real valued and in-
tegrable and 9o is a tr(E’, E) scalarly measurable function which takes values in
an equicontinuous set. We identify 91 and 9z if 91 9z scalarly a.e. (i.e., if
(x, 91(’)) x, 9z(’)) a.e. for all x e E). The spaces f(E) and f(E’) have
been studied in [9], [10], and [11]. It is shown there that iffe no(e and
9 e (E’), then f(z), 9(z)) is a well defined measurable function. Further-
more, iff e f(E) butf o(E) then for p e P and for 9 e f(E’), we can define
p(f) and f, 9) in a natural way as real valued measurable functions.

If A is a K6the space with a solid topology, we set

A(E) {f f(E)" p(f) e A for all p e P}.

We topologize A(E) with the seminorms {q p(f): q e Q, p e P}. A class of
functions in (E’) is in A(E’) if there is a function 9 in the class such that
9 b9o where b e A and 9o is scalarly measurable and equicontinuous valued.
If (A, E) is a dual pair of K6the spaces with A* E and A is given a solid polar
topology from E, then A’ E iff A(E’) E(E’) [11, Theorem 2.3].
The following result, which is contained in [15, p. 85], will be needed often.
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LEMMA 2.1. Let E be a locally convex space. Let T be an equicontinuous net

of linear operations on E into a locally convex space and suppose T 0 point-
wise. Then T 0 uniformly on precompact sets.

If E and F are locally convex spaces, 29(E ’, F) will denote the space of con-
tinuous linear maps from E’ into F. The topology on E’ will always be specified
and will often be the topology of uniform convergence on the precompact sets
in E (denoted E). With an abuse of notation, q(U, F) will denote the space
of linear maps from E’ into F continuous on each equicontinuous set U (here
U is given the weak topology from E). The space 5e(E’, F) will be given the
topology of uniform convergence on the equicontinuous sets U in E’. Semi-
norms generating the topology on (E’, F) are given by

b --) Sup (](b(x’), Y’)I" x’ e U, y’ e V}

Sup {q(4)(x’))" x’ e U)

where U and V are arbitrary neighborhoods of zero in E and F, respectively,
and q is the gauge of V.
We shall find it convenient to have available the following lemma, much of

which is implicit in [7].

LMMA 2.2. Let E and F be complete locally convex spaces with neighborhood
bases { U} and {V} respectively. Let T" E’ --) F be a linear map. Then the
following are equivalent"

(a) T e (E, F).
(b) TeL-w(Uo,F).
(c) T(U) is compact for every U and T oow(U, F).
(d) T* oC.W(F,, E).
(e) T* e oW(V , E).
(f) T*(V) is compactfor every V and T* oW(V , E#).

Proof. (a) (b). The topology induces the same topology on U as
does a [14, p. 106].

(b) (c). T(U) is compact since U is compact and T is continuous on U.
(c) = (d). For a fixed y’ e F’, the form (Tx’, y’) is continuous on each U

and so, since E is complete, is represented by an element T*y’ e E [14, p. 107].
Since T* is obviously the adjoint map, we have T*-I(u) T(U), an F
neighborhood, whence T* ,(F, E).
The implications (d) (e) (f) =,- (a) are similar. []

3. The space AlE]

From now on A will be a complete K6the space with a solid topology and E
a complete locally convex space. We define A[E] A (R) 2 E where A (R) 2 E
is the completion of the tensor product of A and E equipped with the topology
of biequicontinuous convergence.



VECTOR VALUED KTHE FUNCTION SPACES 413

Recall that a locally convex space has the approximation property (a.p.) if
the identity operator can be approximated, uniformly on precompact sets, by
continuous linear operators of finite dimensional range.

PROPOSITION 3.1. (i) A[E]
___

c6’(U, A).
(ii) IfA or E has a.p., then AlE] q(U, A).

Proof (i) By [15, IV, 9.1-], A[E]
_

’(E’, A) a complete space. By Lemma
2.2, Za(U o, A) (E, A)

_
(E, A). Also, &(U, A) is closed in Z,(E’, A)

(uniform limits of continuous functions on U are continuous) so &o(Uo, A) is
complete. An element

.f ai(z) (R) xi e A (R) E

induces the map L" E’ A given by Lyx’ ai(z)(xi, x’) which certainly
belongs to 5(’(U, A). Thus A[E] A (R) 2 E

___
&o(Uo, A).

(ii) This follows from [15, III, 9.1] (in (c) of that theorem, replace E, E’,
and F with E, E, and A, respectively). []

Among the spaces which enjoy the a.p. are the Lp spaces [7, p. 185-[ and the
nuclear spaces [15, p. 110]. By modifying the proof that the Lp spaces have the
a.p. it is easy to show that any K6the space with a normal topology has the a.p.
The same method may be used to show that if the simple functions are dense in
an Orlicz space or a space with the property J of [6], then the space has the a.p.
(If the dual of a K6the space A is a K6the space then the simple functions are
dense in A since they separate the dual.)

COROLLARY 3.2. IfA is given a polar topology from a Kb’the space E, then__
Proofl For every compact set K

_
Z, we have X/((z)e Z. Thus since the

topology on A is solid, the topology on A is stronger than the subspace topology
from ft. Thus

A[E]
__
(U, A)

_
(U, ft) ft[e].

Any element f a(z)(R) xi e A (R) E may be considered as a function

f: Z E by setting f(z) a(z)x,. The map in ,(U, A) with which f is
associated is given by L:r(x’) (f(z), x’} e A. Thus we see that A[E] is
indeed the completion of a space of functions as described in the introduction.
There are, however, more functions "in" A[E]. Iff: Z E has the property
that (f(z),x’) e A for all x’ e E’ we define L" E’ A by L.x’=
(f(z), x’). By identifying f with Ly, we may ask iffis in A[E] q’(U, A).
The question can be answered in the affirmative in a number of situations as
the next two propositions show.
We write R $ R to mean that R

_
R2 -"" are measurable sets and

R R. Given A, the set of a A such that alg alg whenever Ra ’ Rwill be denoted A,. By [10, Proposition 3.3], if A’ is a K6the space then
A A.
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PROPOSITION 3.3. Suppose A’ is a K6the space. Suppose f: Z- E is p-
measurable and p(f) A for every p P. Thenf (U, A).

Thus if A or E has a.p., then f A[E] by Proposition 3.1.

Proof Suppose a net (x)
_
U satisfies x, 0. Let p be the gauge of

U and let qQ. By the comments above, A At. Thus given an e > 0
and using a sequence of compact sets Kj T z there is a compact set K such that
q(P(f)lz-K) < el3 and so q((f(z), x’)]z-r) < e/3 for x’ U. By the p-
measurability of f and the fact that A Ar there is a compact set K’

_
K

such that 0, fir, is continuous and q P(..flr-,) < e/3 and so

q((f(z), x’)]r_/(,) < 8/3 for x’ e U.
Now for every z, (f(z), x’,) 0 and since Op f(K’) is compact in E, we

have (f(z), x’,) 0 uniformly on Op f(K’) (Lemma 2.1). Choose ao so that
if a >_ ao, then for z K,

I(f(z), x’)l < e,/3q(zr,).
Then for 2 o,

q((f(z), x’,)) < q((f(z), x’)]r,) + q((f(z), x)]r_r,)

+ q((f(z),
<_ e/3 + el3 + e/3

Thus (f(z), x> 0 in A and Ly q(U, A).

Remark. If we replace the hypothesis p(f) A with Lfx’ A for all x’ e E’
and Ly(U) is relatively compact then the conclusion of the proposition is still
true. For with the aid of Lemma 2.1 the inequalities

q((f(z), x’)lz-) < e/3 and q((f(z), x’)lr-r,) < e/3
for x’ U are still valid and the proof is as above.

PROPOSITION 3.4. Suppose f: Z E has the property that (f(z), x’) A
for every x’ E’. Suppose that A has a normal topology. Thenf A[-E]/f

(i) Ly 5(U, A,) andf is p-measurable,
(ii) Ly e ’(U, A,) and E is separable, nuclear, or a reflexive Banach space,

or
(iii) E is weakly sequentially complete andf is weakly measurable.

Proof. We have already observed that A has a.p. so by Proposition 3.1, we
need only show that Lj. &a(U, A).

(i) Let b A’. Then the map : U L defined by (x’) (f(z), x’)b(z)
is continuous into the weak topology of D. Thus if Rj ’ R, then by Lemma 2.1
and the fact that A A,

(f(z), x’)b(z)lg_Rj 0 uniformly for x’ U.
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The proof now proceeds as in Proposition 3.3.
(ii) The proof is similar to that of [5, Corollary 9.3.12] (using Lemma

2.2(c) and [ 15, p. 198, Ex. 31 ]).
(iii) By a proof similar to that of I-5, Proposition 9.3.13] we have

Ls e 5(U, A). Thus by (i), fe ALE]. (A weakly measurable function is
p-measurable since a weakly measurable function into a Banach space is
measurable [2, p. 96, Ex. 25].)

If f A[E]
___
(U, A) and a U, define aLs ’(U, A) by (aL)(x’)

a(Lyx’). We can then say that A
___
A[E] is solid if af e A wheneverf e A and

a e L satisfies [lalloo < 1. If R is a measurable set, we set fl t:f The
definition of A[E], is now analogous to that of A,.

PROPOSITIOy 3.5. A[E] is solid.

Proof. Since A[E] is the closure of A (R) E in 5(U, A) we may, given an

fe A[E], a solid neighborhood V in A, and a neighborhood U in E, find a
a(z)x e A (R) E such that

Lyx’ ai(z)(xi, x’) e V

for all x’ e U. If [lalloo <- we then have

aLy(x’) a(z)ai(z)(x, x’) V.

Thus aLy is in the closure of A (R) E and so in A[E].
Given a solid neighborhood V in A and a neighborhood U in E, then

{f: L.x’ e V for all x’ e U} is a typical element of a neighborhood base in
ALE]. Thus it is easy to see that A[E] has a solid topology and from this it is
easy to see that the solid hull of a bounded set in A[E] is again bounded.

PROPOSITION 3.6. IfA A, then A[E] A[E],.

Proof. Letf e A[E] be given and suppose Rj ]’ R. Let a solid neighborhood
V c_ A and a neighborhood U

_
E be given. Since Ly(U) is compact,

Ly(x’)] Ly(x’)l uniformly for x’ e U (Lemma 2.1). But this says exactly
thatflRj --* fl, in A[E].

4. The dual of AlE]

Schaefer [15, IV, 9.2], gives a representation for elements of the dual of a
tensor product which is symmetric in the factors of the product. We now give
an alternative representation which is not synmetric and is very suggestive in
the case of A[E]. Note that the following discussion and theorem do not really
use the fact that A is a K6the space.
We may construct an element of A[E]’ as follows. Let U be a neighborhood

in E and # a positive Radon measure on U. Let L and L be L and L for
the measure # on U and let B e L(A’) (see Section 2; B is a class of functions
from U into A’). Anyfe A[-E]

___
&(U, A) may be considered as an element
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of LI(A), since as a map from U into A, Lj. is continuous and so measurable
and if q is a continuous seminorm on A, then

fv q(L’x’) dp(x’) <- v Sup q(L’x’),, v

_< p(U) Sup q(Lx’)
X’ U

Also, (L1.x’)B(x’) dn is # measurable and almost everywhere defined [9,
Theorem 3.2]. Set

(*) 4)(f)=fvfzLzx’B(x’)dndp’o
Let B take values in an equicontinuous set whose polar has gauge q. Then

’4’(f)l<-fvfzlLx’B(x’)ldndo
_< p(V ) Sup q(Lfx’)

X’ U

and 4 is continuous on A[-E].

Tv.OgVM 4.1. Every A[E]’ can be represented as in (*).

Proof. Given , choose neighborhoods U and V in E and A such that

,q(f), < Sup {If (Lfx’)b dn x’ u, be V}.
For fe A[E] define a scalar valued function hz on U x V by h(x’, b)
(Lfx’)b dn. Then h e cd(U x V) (the space of continuous functions on
U x V). For let a net ((x;, b))

_
U x V satisfy (x;, b) (x’, b). Then,

if q is the gauge of V,

f ((Lx’)b (Lx;)b) dn <_ f (Lx’)(b b) dn + L(x’ x;)bdn

<_ f (Lx’)(b- b) dn[ + q(L(x’ x;))

-0;

this proves the continuity of hz. Define a continuous linear form Po on h^rg
_

cg(U x V) by po(h.) b(f). Then

Thus Po is well defined and continuous. By the Hahn-Banach Theorem extend
Po to a Radon measure Po on cd(U x V). Set - Iml. Finally, any
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c (U) can be considered as a c’ qC(U x V ) by setting c’(x’, b) c(x’).
Thus # induces a Radon measure on (U) which we again denote p. Now

and so

Ih(x’, b)l <_ q(Lx’)

Ib(f)l- [po(h)l <_ lu(h) < p(qL.).
Thus b is continuous on A[E] when given the subspace topology induced from
LI(A). Thus, by the Hahn-Banach Theorem and [11, Theorem 2.3], there is a
B z L(A’) such that

(f)=fvfz
The great temptation is to try to define a function g" Z E’ by

<x, g(z)> <x, x’>B(x’)(z) dp;

for then we have formally, for functionsfe A[E],

4(f)

and g gives a representation of the functional. In case that Z N, the natural
numbers, this can easily be done and we have a new proof of [12, Satz 4.13].
We have also been able to do this in several special cases, all of which however
are contained in Theorem 4.9 which is obtained by a slightly different method.
We now build the necessary machinery to obtain the result.

DEFINITION. A p-measurable function f: Z E will be in Ao[E] if L e
A[E]. We identifyf andf if

(f(z), x’) (f(z), x’) a.e. for all x’ e E’,

i.e., iff andf are scalarly a.e. equal. (See Proposition 3.3.)

DIITON. A function g" Z E’ will be in A[E’] if there is a neighbor-
hood U in E, a positive Radon measure p on U, a b e A, and a scalarly measur-
able function go" Z U with g bgo and

(*) [(x, go(z))[ N [ [(x, x’)[ dp a.e.
3v

Scalarly a.e. equal functions are identified.
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PROPOSITION 4.2. If E is separable, then the function go in the definition of
A[E’] may be chosen so that (*) holds everywhere.

Proof Let {x,}
___
E be dense. By altering go on a set of measure zero we

may assume that

I(x,, go(Z))l < [" I(x,, x’)l dp
3v

everywhere for all n. If x x 6 E, then for a fixed z,

and
I<x=, go(z))l --+ I<x, go(Z))l

’o

I(x,, x’)l d - [ I(x, x’)l d

since I](x, x’)l I(x, x’)]] [(x x, x’)] p(x x) O.

PROPOSITION 4.3. Iff 0 in Ao[E], then p(f) 0 a.e. for eery p P.

Pro& The function f is measurable and scalarly a.e. equal to zero in

E. By [7, p. 21], f 0 a.e. which ives the result.
We now compare the spaces introduced in [9] and [11] with those in this

paper.

PROPOSITION 4.4. (i) IfA’ A* then A(E) A[E],
(ii) IfA’ A*, A** A, and E is nuclear, A(E) A[E].
(iii) A[E’] g A(E’).
(iv) IfE is nuclear, AE’] A(E’).

Proof Let A E and AE be A E equipped with the subspace
topology from A(E) and with the projective topology respectively. Then the
identity maps

i:AEAE and i"AEAE
are continuous. For let p P and q Q and letf ai(z)xi A E. Then

q(p(f)) qp( ai(z)xi)

q(ai(z)p(x3)

P(xi)q(ai(z))

Thus q(p(f)) Inf { p(x3q(ai(z))’f ai(z)xi} which is a typical semi-
norm for the topology A @ E [15, III, 6.3]. Thus is continuous. Also,

Sup q((f(z), x’)) qp(f)
U

showing that i’ is continuous.
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(i) A (R) E is dense in A(E) since it is easy to show that it separates points
of A(E)’ (= A’(E’) by [-11, Theorem 2.3]). Thus i’ has a continuous extension
from A(E) into ALE]. By [9, Proposition 6.2], the extension is one-to-one.

(ii) By[15, IV, 9.4, Cor. 2],A (R)E A (R)eEsoA (R),E-- A (R)eE. By
[11, Theorem 2.4-[, A[E] is complete. Then A(E) A (R) E A (R) E

(iii) This follows immediately from the definitions.
(iv) This follows immediately from the definitions and the fact that for any

equicontinuous set in E’ there is a radon measure # satisfying (*) [15, IV,
10.2]. []

PROPOSITION 4.5. Iff e Ao[E] and # is a Radon measure on U, (f(z), x’) is
n x # measurable and (f(z), x’)b(z) is n x It integrablefor any b A*.

Proof Let e > 0 and p e P be given. Since 0v fis measurable we may find
a compact K’

_
K such that n(K- K’) < e((U)) and 0v olin, is con-

tinuous. Then

(n x /)(K x U K’ x U) < e

and we claim that (f(z), x’) is continuous on K’ x U. Let a net ((z,, x;))
_

K’ x U satisfy (z,, x;) - (z, x’). Set x, f(z,), x f(z). Then

I(x, x’) (x, x;)l _< I(x, x’ x;)l + I(x x,

_< I(x, x’- x;)l + p(x- x)--- 0.

This establishes the desired measurability. By the Tonelli Theorem,

-< #(U) x’Supo j’z I(f(z), x’)b(z)l

Functions in Ao[E] and A[E’] are not a.e. defined. However, we have the
following result.

PROPOSITION 4.6. If (A, E) is a dual pair of Kb’the spaces andfe Ao(E) and
E(E’), then (f(z), 9(z)) is a well defined measurablefunction.

Proof By Proposition 4.3, if f-- 0 in Ao[E], then p(f) 0 a.e. for all
p e P. The proof is now exactly as in [-9, Theorem 3.2]. []

PROPOSITION 4.7. /f (A, E) is a dual pair of K6the spaces, and g e E[E’]
then the mapf (f, g) is continuousfrom Ao[E] into Lx.
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Proof. Let g bgo as in the definition of Z[E’]. Then

<fzfoo I(f(z),x’)b(z)ldldn

=fvz’(f(z)’x’)b(z)ldzrdlo
-< P(U) x’Supv fz [(f(z), x )b(z)l dn

< 00.

This shows that (f, g) e L and that I(f, g)[ dn is dominated by a continuous
seminorm on Ao[E].
For a fixed g e Z[E’] we now define (f, g)e L for every f e A[E] by

extending the continuous map of the above proposition. One can then easily
prove the following result.

PROPOSITION 4.8. (i) The form (f, g) is bilinear.
(ii) For a eL, a(f, g) (af, g) (f, ag) (see definition preceding

Proposition 3.5).
(iii) Iff e A[E] and g bgo e Z[E], then

f l(f’g)l dn <- P(u) Sup f ’Lxx’b(z)’
o

THEOREM 4.9. If A is given the normal topology from E, then
Z[E’].

Proofi Proposition 4.8 (iii) shows immediately that f <f, g> d is a
continuous linear functional on A[E].
Now let e A[E]’ be given. Then there is a bo e Z with bo 0 and a neigh-

borhood U in E such that

(*) [(f), Sup{fiL(x’)[bo(z)dn’x’e U}.
Forfe A[E] and b e B, the unit ball of L, define

h(b, x’) f b(z)Lx’bo(z) d.

Then as in the proof of Theorem 4.1, h e (B x U), the space of continuous
functions on B x U. Define a continuous linear form o on
(B x U) by po(h) (f). As in the proof of Theorem 4.1, o is well
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defined and continuous. Set # Iol and also denote by # the restriction of p
to (U) as in the proof of Theorem 4.1. Then forf e AlE-l,

I(.f)l I/o(h)l

< 1- [hy(b, x’)l dp

bLzx’bo d d

; fz ILfx’lb(z)dzdp’o
For any element of D(E) (not DIE]) of the form bo ai(z)xj where aj e A

and x e E define
(bo E a,(z)x,) (E a,(z)x,).

Then (*) shows that is well defined. By (**),

(U) .z p(bo a,(z)xi) dn.

Thus is continuous on a subspace of L(E). Extend ff to all of L(E) by the
Hahn-Banach Theorem. Then by [11, Theorem 2.3] there is a scalarly measur-
able go: Z U such that

(***) (a(z)x, bo(z)Oo(Z)) dn

Comparing this with (**) we have

Since A is solid, we have

fzlabo(x’g(z))[dn fziab’ ;o’(x’x’)ldpdn"
If R is any measurable set then setting a Zn in the above we have,

fRlb(x’g(z))ldnfRbfo [(x,x’)ldpdn.

Thus

bo(z)l(x, go(Z))l <- bo(z) fto I(x, x’)l dp aoeo



422 ALAN L. MACDONALD

Since we may assume go(Z) 0 whenever bo(z) 0 without changing (***)
we have

I(x, 9o(Z))] < [ I(x, x’)[ dl a.e.

Thus 9 bogo E[E’]. Using (***), and the linearity of b we see that 9
represents b on A (R) E. By the continuity of b the representation extends to
all of A[E].

It is not hard to show that A[E] separates E[E’] and so different elements
of E[E’] induce different elements of A[E]’.

5. A[E] as a space of linear maps

Recall [5, p. 591] that a Radon measure on Z into E is a continuous linear
map of oeg(Z), the space of continuous functions on Z with compact support
equipped with the usual inductive limit topology, into E. We shall say that a
Radon measure b is absolutely continuous with respect to n if for each x’ E’
the (scalar valued) Radon measure (b(-), x’> is absolutely continuous with
respect to n.

Letfef[E]. By Lemma 2.2, LeS(’(,E). For beO we set L(b)=
bf dn. Thus

and iff is a function,

b dn

Thus everyfe f[E] induces a map of 3((Z) ( ) into E.

THEOREM 5.1. f[E] can be identified with the space ofRadon measures into E
whose restrictions to compact sets in Z are compact linear maps and which are
absolutely continuous with respect to n.

Proof Let fe f[E]. By Lemma 2.2 the map b bf drc maps the equi-
continuous sets in into compact sets in E (the equicontinuous sets in are
those whose supports are contained in a fixed compact set and are uniformly
bounded). By restricting this map to 3((Z), we see that f induces a compact
Radon measure on compact sets in Z.

If n(R) 0, then R 0 in and so the measure is absolutely continuous
with respect to n.

Conversely, let m: ogg(Z) - E be a Radon measure of the supposed type.
By [5, p. 592], m can be extended to whence by Lemma 2.2 and Proposition
3.1, m* fl[E].
COROLLARY 5.2. IfE is a nuclear FrOchet space, the space ofRadon measures

into E absolutely continuous with respect to n may be identified with the set of
measurable functions f: Z - E such that r P(f) dn < for every continuous
seminorm p and compact set K.
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Proof Since E is nuclear, the relatively compact sets in E are precisely the
bounded sets [15, p. 101 ].
Now (Z) is a strict inductive limit of Banach spaces so the continuous

maps from U(Z) into E are just those bounded on each gU(K) where K is
compact. Putting these facts together with the theorem, we see that fl[E] can
be identified with the space of Radon measures into E. But by Proposition
4.4, [E] (E) and by [-9], g)(E) is the space of functions described. []

The above result is contained in [16, p. 65] where a different proof is given.
We hope to explore the relationship between other results in [16] with those
given here in a later paper. Rag [13, p. 158] and Edwards [5, 8.19.4 and
8.19.5] also have similar results.

THEOREM 5.3. Suppose A A**. Let A be given the Mackey topology from
A* and A* be given the topology ofprecompact convergence from A. Suppose
that E or A* has a.p. Then SO(A, E) A*[E].

Proof. By [4, Th6or6me 6], A is complete and by [10, Proposition 3.7],
A* is quasicomplete. Thus by [-8, p. 309], the topological dual of A* equipped
with the topology of precompact convergence is A. Thus by Lemma 2.2 and
Proposition 3.1,

 e(u, A*)= e)=  e(A,

Any e S(A, E) induces an additive set function on the relatively compact
measurable sets in Z defined by R (R). Rag [13, Theorem 3.2] has charac-
terized those set functions which arise in this manner with the assumption that
A is a Banach space but without the assumption that A’ is a K6the space. Thus
the present result complements Rag’s. Note that if A’ is a K6the space then
A A, and so a set function which represents an element of SO(A, E) is
countably additive.

COROLLARY 5.4. Suppose A A**. Let A be given the Mackey topology
from A* andA* be given the topology ofprecompact convergencefrom A. Suppose
E is a nuclear Frdchet space. Then SO(A, E) can be identified with the space of
measurable functions f: Z - E such that p(f) A* for every continuous semi-
norm p on E.

Proof. We have by the theorem and Proposition 4.4, SO(A, E) A*[E]
A*(E) and A*(E) is the space of functions described above. []

By a proof similar to that of Theorem 5.3, we may prove"

THEOREM 5.5. IfE is polar reflexive and ifA or E has a.p., then SO(E, A)

Polar reflexivity is defined in [8, p. 308], where it is shown that all Fr6chet
spaces and all reflexive spaces are polar reflexive.

Results similar to the theorem above are found in [6].
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