Pretty Permutation Parity Proof

Let p be a permutation of $\left[\begin{array}{lll}1 & 2 & \ldots\end{array}\right]$. Let $G(p)$ be the number of times in p that a number is greater than a number to its immediate right. For example, $G\left(\left[\begin{array}{llll}2 & 4 & 1 & 3\end{array}\right]\right)=1$. Note that $G\left[\begin{array}{llll}1 & 2 & \ldots & n\end{array}\right]=0$. A transposition of numbers in adjacent positions changes the parity of G. Every transposition can be expressed as a product of an odd number of such transpositions. Therefore every transposition changes the parity of G. Thus the number of transpositions used to obtain p is always even or always odd, according as $G(p)$ is even or odd.

